Open Access Open Access  Restricted Access Subscription or Fee Access

Optimization of Machining Parameters in Hard Turning of Automotive Gears with PCBN tool using Taguchi Method


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v15i5.21070

Abstract


Hard turning, a comparatively modern machining technology, can replace the conventional grinding process for finishing of parts made out of steel. Nowadays, industries prefer hard turning to grinding. This is due to some of the most distinctive features of hard turning over grinding, such as lower machining time and manufacturing cost, and the achievement of grinding equivalent quality characteristics on parts and machining can be possible in a dry environment, which eliminates the hazardous effect of cooling media used during machining on the environment and humans. However, in hard turning, machining parameters (cutting speed-vc, depth of cut-ap, and feed rate-f) are critical for achieving specified quality attributes and establishing a cost-effective setup. The influence of machining parameters on workpiece surface roughness (Ra) and tool flank wear (VB) has been investigated in this research using the Taguchi Design of Experiment (DOE) approach, as well as signal to noise (S/N) ratio, and Analysis of variance (ANOVA) techniques. The experiments have been carried out on automotive gear made of SAE-AISI 5120-compliant 20Mn5Cr5 alloyed hardened steel. The CBN cutting tool has been used for this research.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


ANOVA; CBN; Ceramic; Grinding; Hard turning; Taguchi

Full Text:

PDF


References


M. S. Karthik, V. R. Raju, K. N. Reddy, N. Balashanmugam, M. R. Sankar, Cutting parameters optimization for surface roughness during dry hard turning of EN 31 bearing steel using CBN insert, Material today: Proceedings, 2020, Vol. 26, n. 2, pp. 1119-1125.
https://doi.org/10.1016/j.matpr.2020.02.224

L. Tang, Y. Sun, B. Li, J. Shen, G. Meng, Wear performance and mechanisms of PCBN tool in dry hard turning of AISI D2 hardened steel, Tribology International, Vol. 132, pp. 228-236, 2019.
https://doi.org/10.1016/j.triboint.2018.12.026

S. A. Khan, M. Umar, M. Q. Saleem, N. A. Mufti, S. F. Raza, Experimental investigations on wiper inserts' edge preparation, workpiece hardness and operating parameters in hard turning of AISI D2 steel, Journal of Manufacturing Processes, Vol. 34, pp. 187-196, 2018.
https://doi.org/10.1016/j.jmapro.2018.06.004

S. Girisankar, M. Omkumar, Investigation on the hard turning in enhancing the surface reliability by white layer elimination using cbn semi worn-out inserts under shielding gas atmosphere, Journal of Mechanical Science and Technology, Vol. 33, pp. 2345-2352, 2019.
https://doi.org/10.1007/s12206-019-0434-7

R. R. Gnanadurai, A. S. Varadarajan, Investigation on the effect of cooling of the tool using heat pipe during hard turning with minimal fluid application, Engineering Science and Technology, an International Journal, Vol. 19, n. 3, pp. 1190-1198, 2016.
https://doi.org/10.1016/j.jestch.2016.01.012

R. Ferreira, J. Řehoř, C.H. Lauro, D. Carou, J.P. Davim, Analysis of the hard turning of AISI H13 steel with ceramic tools based on tool geometry: surface roughness, tool wear and their relation, Journal of the Brazilian Society of Mechanical Science and Engineering, Vol. 38, pp. 2413-2420, 2016.
https://doi.org/10.1007/s40430-016-0504-z

A. Panda, A. K. Sahoo, R. Kumar, R. K. Das, Analysis of Machinability Aspects during Hard Turning of Bearing Steel, Materials Today: Proceedings, 2019, Vol. 18, n. 7, pp. 3590-3596.
https://doi.org/10.1016/j.matpr.2019.07.290

P. M. Duc, L. H. Giang, M. D. Dai, D. T. Sy, An experimental study on the effect of tool geometry on tool wear and surface roughness in hard turning, Advances in Mechanical Engineering, Vol. 12, n. 9, pp. 1-11, 2020.
https://doi.org/10.1177/1687814020959885

P. L. Khan, S. V. Bhivsane, Experimental Analysis and Investigation of Machining Parameters in Finish Hard Turning of AISI 4340 Steel, Procedia Manufacturing, 2018, Vol. 20, pp. 265-270.
https://doi.org/10.1016/j.promfg.2018.02.039

J. D. J. Dhilip, J. Jeevan, D. Arulkirubakaran and M. Ramesh, Investigation and optimization of parameters for hard turning of OHNS steel, Material and Manufacturing Processes, Vol. 35, n. 10, pp. 1113-1119, 2020.
https://doi.org/10.1080/10426914.2020.1765254

S. Arfaoui, F. Zemzemi, M. Dakhli and Z. Tourki, Optimization of hard turning process parameters using the response surface methodology and finite element simulation, The International Journal of Advanced Manufacturing Technology, Vol. 103, pp. 1279-1290, 2019.
https://doi.org/10.1007/s00170-019-03535-2

V. N. Gaitonde, S. R. Karnik, L. Figueira, J. P. Davim, Analysis of Machinability During Hard Turning of Cold Work Tool Steel (Type: AISI D2), Materials and Manufacturing Processes, Vol. 24, n. 12, pp. 1373-1382.
https://doi.org/10.1080/10426910902997415

D. M. Kim, D. Y. Kim, N. Banergee, H. W. Park, Predictive modelling for the cryogenic cooling condition of the hard turning process, The International Journal of Advanced Manufacturing Technology, Vo. 99, pp. 2877-2891, 2018.
https://doi.org/10.1007/s00170-018-2660-z

M. Rafighi, M. Özdemir, S. A. Shehabi, M. T. Kaya, Sustainable Hard Turning of High Chromium AISI D2 Tool Steel Using CBN and Ceramic Inserts, Transactions of the Indian Institute of Metals, Vol. 74, pp. 1639-1653, 2021.
https://doi.org/10.1007/s12666-021-02245-2

O. Gutnichenk, M. Nilsson, R. Lindvall, V. Bushlya, M. Andersson, Improvement of tool utilization when hard turning with cBN tools at varying process parameters, Wear, Vol. 477, pp. 1-10, 2021.
https://doi.org/10.1016/j.wear.2021.203900

S. Yousefi, M. Zohoor, Effect of cutting parameters on the dimensional accuracy and surface finish in the hard turning of MDN250 steel with cubic boron nitride tool, for developing a knowledged base expert system, International Journal of Mechanical and Materials Engineering, Vol. 14, pp. 1-13, 2019.
https://doi.org/10.1186/s40712-018-0097-7

D. Samantaraya, S. Lakade, Hard turning cutting tool materials used in automotive and bearing manufacturing applications - a review, IOP Conf. Ser. Material Science and Engineering, 814, pp. 1-8.
https://doi.org/10.1088/1757-899X/814/1/012005

R. Suresh, S. Vasavarajappa, Effect of process parameters on tool wear and surface roughness during turning of hardened steel with coated ceramic tools, ICAMME Procedia Materials Science, Vol. 5, 2014, pp. 1450-1459.
https://doi.org/10.1016/j.mspro.2014.07.464

A. R. Motorcu, The Optimization of Machining Parameters Using the Taguchi Method for Surface Roughness of AISI 8660 Hardened Alloy Steel, Journal of Mechanical Engineering, Vol. 56, n. 6, pp. 391-401, 2010.

Selvaraj, D., Chandramohan, P., Mohanraj, M., Rajesh, P., Experimental Investigations on Surface Roughness, Cutting Force and Tool Wear of Duplex Stainless Steel in End Milling Using Taguchi Method, (2013) International Review of Mechanical Engineering (IREME), 7 (6), pp. 1133-1141.

Hadi, H., Tajul, L., Hamzas, M. F. M. A., Hussin, M. S., Zailani, Z. A., Radzi, M. H. M., Parameter Optimization For JIS S45C Steel Turning Process Based on Taguchi Method, (2012) International Review of Mechanical Engineering (IREME), 6 (3), pp. 462-467.

B. R. Sankar, P. U. Rao, Analysis of Forces during Hard Turning of AISI 52100 Steel Using Taguchi Method, Materials today: Proceedings, 2017, Vol. 4, n. 2, pp. 2114-2118.
https://doi.org/10.1016/j.matpr.2017.02.057

D. Samantaraya, S. Lakade, A. Keche, An Alternate Machining Method for Hardened Automotive Gears, Procedia manufacturing, Vol. 20, 2018, pp. 517-522.
https://doi.org/10.1016/j.promfg.2018.02.077

M. Nalbant, H. Gökkaya, G. Sur, Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, Materials and Design, Vol. 28, n. 4, pp. 1379-1385, 2007.
https://doi.org/10.1016/j.matdes.2006.01.008

J. Z. Zhang, J. C. Chenb, E. D. Kirby, Surface roughness optimization in an end-milling operation using the taguchi design method, Journal of Materials Processing Technology, Vol. 184, n. 1-3, pp. 233-239, 2007.
https://doi.org/10.1016/j.jmatprotec.2006.11.029

M. K. Gupta, G. Singh, and P. K. Sood, Modeling and Optimization of Tool Wear in Machining of EN24 Steel Using Taguchi Approach, Journal of The Institution of Engineers (India): Series C, Vol. 96, pp. 269- 277, 2015.
https://doi.org/10.1007/s40032-015-0175-z

P. Sivaiah, D. Chakradhar, Modeling and optimization of sustainable manufacturing process in machining of 17-4 PH stainless steel, Measurement, Vol. 134, pp. 142-152, 2019.
https://doi.org/10.1016/j.measurement.2018.10.067

Alrashdan, M., Quality and Damping Factors Optimization Using Taguchi Methods in Cantilever Beam Based Piezoelectric Micro-Power Generator for Cardiac Pacemaker Applications, (2020) International Review on Modelling and Simulations (IREMOS), 13 (2), pp. 74-84.
https://doi.org/10.15866/iremos.v13i2.18347

Sabry, I., Idrisi, A., Mourad, A., Friction Stir Welding Process Parameters Optimization Through Hybrid Multi-Criteria Decision-Making Approach, (2021) International Review on Modelling and Simulations (IREMOS), 14 (1), pp. 32-43.
https://doi.org/10.15866/iremos.v14i1.19537


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize