Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of Microstructure, Phase Formation on the Mechanical and Surface Characteristics of Low Alloy Medium Carbon Forged Steels – A Review


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v15i6.20972

Abstract


Forged steels are most commonly used in automobile industries because of their high toughness and ability to handle the impact. By controlling the heating temperature, cooling rates, and intensity of deformation, it is possible to have different microconstituents like pearlite, bainite, and a mixture of these phases. The type of microstructure obtained by forging has a positive effect in tailoring the property as per the product requirements. They have better surface properties compared to their counterpart cast iron. In this paper, an attempt is made to study the various properties of forged steels and the effect of cooling rates and alloying elements on the microstructure and hardness of the forged steel. The influence of laser hardening on the wear behavior of the forged steel is also reported. The effect of Titanium and Vanadium on the hardness of forged steel is considered and also the effect of the addition of Chromium on bainite steels is evaluated. The wear debris deposition in hot rolling to vintage glaze (Oxide Island) and interaction effect with high temperature oxidation hence, on tribology, is not elucidated yet. As surface tribology, laser hardening imparted an ultra-high level of skin hardness to forged steel which suppressed wear of adhesion and also reduced debris through abrasion. Finally, on the intense literature study, research gaps are recognized and presented.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Forged Steel; Bainite; Fatigue; Wear; Grain Refinement; Spheroidize

Full Text:

PDF


References


S.A. Mckelvey, A. Fetami, Surface finish effect on fatigue behavior of forged steel, International Journal of Fatigue, vol.36,2009,130-145.
https://doi.org/10.1016/j.ijfatigue.2011.08.008

Design practice, ASME handbook: Metals engineering design, vol. 3. New York, NY: McGraw-Hill; 1953. 297-305.

Mcquaid H W, The metallurgical phase of fatigue failures, Proceedings for the society of experimental stress analyses, vol.3, 1946, 142-148.

Hankins G, Becker M, The fatigue resistance of unmachined forged steels, Journal of Iron and Steel Institute, vol.126, 1932, 205-236.

Hankins G, Becker M, Mills H, Further experiments on the effect of surface finish conditions on fatigue resistance of steels. Journal of Iron and Steel Institute, vol.133, 1936 309-425.

Gildersleeve M, Relationship between decarburization and fatigue strength of through hardened and carburizing steels. Material Science and Technology, vol. 7, 1991, 307-310.
https://doi.org/10.1179/mst.1991.7.4.307

Adamaszek K, Broz P, Decarburization and hardness changes in carbon steels caused by high temperature surface oxidation in ambient air, Diffusion and Defect Data: Defect and Diffusion Forum, vol. 194,2001,1701-1706.
https://doi.org/10.4028/www.scientific.net/DDF.194-199.1701

Ariel A, Mukherjee A, Decarburization and fatigue The Enigma of the Eighties: Environment, Economics, Energy, vol.1, 1979, 103- 111.

Gadelmawla E S, Koura M M, Maksoud T M A, Elewa I M, Soliman H H, Roughness parameters. Journal of Materials Processing Technology, vol. 123, 2002, 133-145.
https://doi.org/10.1016/S0924-0136(02)00060-2

Novovic D, Dewes R C, Aspinwall D K, Voice W, Bowen P, International Journal of Machine Tools and Manufacture, vol. 44,2004, 125-134.
https://doi.org/10.1016/j.ijmachtools.2003.10.018

Murakami Y, Endo M, Effect of defects, inclusions and inhomogeneities on fatigue strength. International Journal of Fatigue, vol.16, 1994, 163-182.
https://doi.org/10.1016/0142-1123(94)90001-9

Murakami Y., Effect of surface roughness on fatigue strength, Metal Fatigue: Effect of Small Defects and Non Metallic Inclusions, 28-40, Elsevier, Kidlington, Oxford, UK.

Takahashi K, Murakami Y, Quantitative evaluation of effect of surface roughness on fatigue strength, Engineering Against Fatigue, 693-703, A.A. Balkema, Ed., Sheffield, UK.

Arola D, Williams C L, Estimating the fatigue stress concentration factor of machined surfaces, International Journal of Fatigue, vol. 24, 2002, 923-30.
https://doi.org/10.1016/S0142-1123(02)00012-9

Maiya P, Busch D, Effect of surface roughness on low cycle fatigue behavior of type 304 stainless steel, Metallurgical Transactions A, vol. 6A, 1975, 1761-1766.
https://doi.org/10.1007/BF02642305

Deng G, Nagamoto K, Nakano Y, Nakanishi T, Evaluation of the effect of surface roughness on crack initiation life, ICF12, Natural Resources Canada, Ottawa, Canada. 2009, 1-8.

Wiegand H, Effect of surface treatment on fatigue strength, MAP translation, vol 1772. Flugmtorenbau (Berlin): BMW; 1940.

Farrahi GH, Smith DJ, Zhu WX, McMahon CA. Influence of residual stress on fatigue life of hot forged and shot blasted steel components, International Journal of Engineering Transactions B: Applications, vol. 15, 2002, 79-86.

Shareef I, Hasselbusch M D, Endurance limit modifying factors for hardened machined surfaces. SAE Transactions, vol. 105, 1996, 889-899.
https://doi.org/10.4271/961054

Juvinall R, Marshek K, Fundamentals of Machine Component Design, 2nd Ed., John Wiley and Sons, Hoboken, NJ.

Edwards K, McKee R. Fundamentals of mechanical component design. New York (NY): McGraw-Hill; 1991.

Bannantine J, Comer J, Handrock J. Fundamentals of metal fatigue analysis. Englewood Cliffs (NJ): Prentice Hall; 1990.

Stephens R I, Fatemi A, Stephens RR, Fuchs HO. Metal fatigue in engineering. 2nd ed. New York (NY): John Wiley and Sons; 2000.

Budynas R, Nisbett J. Shigley's mechanical engineering design. 8th ed. New York (NY): McGraw Hill; 2008.

Hanel B, Haibach E, Seeger T, Wirthgen G, Zenner H. Analytical strength assessment of components in mechanical engineering: FKM guidelines. 5th ed. VDMA Verl., Frankfurt am Main; 2003. 54-55.

ASTM Standard E8-04. Standard test methods for tension testing of metallic materials. Annual book of ASTM standards, vol. 03.01. West Conshohocken (PA): ASTM International; 2004. 62- 85.

Dupont-Marillia F, Jahazi M, Lafreniere S, Belanger P. Design and optimisation of a phased array transducer for ultrasonic inspection of large forged steel ingots. NDT & E International. 2019. vol. 1(103). 119-29.
https://doi.org/10.1016/j.ndteint.2019.02.007

Dupont-Marillia F, Jahazi M, Lafreniere S, Belanger P. Influence of local mechanical parameters on ultrasonic wave propagation in large forged steel Ingots. Journal of Nondestructive Evaluation. 2019 Sep;38(3):1-9.
https://doi.org/10.1007/s10921-019-0611-8

Liu W, Cao Y, Guo Y, Sun M, Xu B, Li D. Solidification microstructure of Cr4Mo4V steel forged in the semi-solid state. Journal of Materials Science & Technology. 2020 Feb 1;38:170- 82.
https://doi.org/10.1016/j.jmst.2019.07.049

Chang L, Burke MG, Scenini F. Understanding the effect of surface finish on stress corrosion crack initiation in warm-forged stainless steel 304L in high-temperature water. Scripta Materialia. 2019 Apr 15;164:1-5.
https://doi.org/10.1016/j.scriptamat.2019.01.032

Ji H, Duan H, Li Y, Li W, Huang X, Pei W, Lu Y. Optimization the working parameters of as-forged 42CrMo steel by constitutive equation-dynamic recrystallization equation and processing maps. Journal of Materials Research and Technology. 2020 Jul 1;9(4):7210-24.
https://doi.org/10.1016/j.jmrt.2020.04.078

Tanabi H, Rafighi M. Turning machinability of alloyed ductile iron compared to forged EN 1.7131 steel. Materials Testing. 2020 Dec 1;62(12):1259-64.
https://doi.org/10.1515/mt-2020-621216

Karthick L, Mallireddy N, Yogaraja J, Sivakumar S, Sasikumar A. Modelling and Analysis of an EN8 crankshaft material in comparison with Forged steel crankshaft. Materials Today: Proceedings. 2021 May 21.
https://doi.org/10.1016/j.matpr.2021.05.079

Raghu K, Balachandran G, Ravichandar D. Microstructure and Mechanical Properties in WarmForged 27MnSiVS6 Microalloyed Steel. Transactions of the Indian Institute of Metals. 2019 Feb;72(2):411-21.
https://doi.org/10.1007/s12666-018-1492-8

Lozares J, Plata G, Hurtado I, Sánchez A, Loizaga I. Near solidus forming (NSF): Semi-solid steel forming at high solid content to obtain as-forged properties. Metals. 2020 Feb;10(2):198.
https://doi.org/10.3390/met10020198

Chen KK, Chao CY, Chen JH, Wu JH, Chang YH, Du JK. Effect of Low Copper Addition to As-Forged 304 Stainless Steel for Dental Applications. Metals. 2021 Jan;11(1):43.
https://doi.org/10.3390/met11010043

Collins S, Michal G. Forging effects on fatigue properties of AISI 4140 steel. 36th MWSP conf proc, vol. 32. Baltimore (MD): ISS- AIME; 1995. 257-269.

Heywood R. Designing against fatigue. London (England): Chapman and Hall; 1962.

Siebel E, Gaier M. The influence of surface roughness on the fatigue strength of steels and non-ferrous alloys. The Engineers' Digest, vol. 18(3), 1957, 109-112.

Fluck P, Influence of surface roughness on the fatigue life and scatter of test results of two steels. Proceedings of American society for testing and materials, vol. 51. Philadelphia (PA): ASTM; 1951. 584-92.

Hejna A, Barczewski M, Skórczewska K, Szulc J, Chmielnicki B, Korol J, Formela K. Sustainable upcycling of brewers' spent grain by thermo-mechanical treatment in twin-screw extruder. Journal of Cleaner Production. 2021 Feb 20;285:124839.
https://doi.org/10.1016/j.jclepro.2020.124839

Medvedev AE, Murashkin MY, Enikeev NA, Valiev RZ, Hodgson PD, Lapovok R. Enhancement of mechanical and electrical properties of Al-RE alloys by optimizing rare-earth concentration and thermo-mechanical treatment. Journal of Alloys and Compounds. 2018 May 15;745:696-704.
https://doi.org/10.1016/j.jallcom.2018.02.247

Kim JS, Kang CY, Kim JN. Effect of Thermo-mechanical Treatment on the Formation Behavior of Martensite in 316L Stainless Steel. Journal of the Korean Institute of Metals and Materials. 2018;56(4):265-71.
https://doi.org/10.3365/KJMM.2018.56.4.265

De-Deus G, Silva EJ, Vieira VT, Belladonna FG, Elias CN, Plotino G, Grande NM. Blue thermomechanical treatment optimizes fatigue resistance and flexibility of the Reciproc files. Journal of endodontics. 2017 Mar 1;43(3):462-6.
https://doi.org/10.1016/j.joen.2016.10.039

Nie Q, Wei X, Qin X, Huang Y, Chen G, Yang L, Wang B, Tang W. Microstructure and properties of graphite nanoflakes/Cu matrix composites fabricated by pressureless sintering and subsequent thermo-mechanical treatment. Diamond and Related Materials. 2020 Oct 1;108:107948.
https://doi.org/10.1016/j.diamond.2020.107948

Pietsch VL, Bühler JM, Karbstein HP, Emin MA. High moisture extrusion of soy protein concentrate: Influence of thermomechanical treatment on protein-protein interactions and rheological properties. Journal of Food Engineering. 2019 Jun 1;251:11-8.
https://doi.org/10.1016/j.jfoodeng.2019.01.001

Li S, Choi MS, Nam TH. Effect of thermo-mechanical treatment on microstructural evolution and mechanical properties of a superelastic Ti-Zr-based shape memory alloy. Materials Science and Engineering: A. 2020 Jul 3;789:139664.
https://doi.org/10.1016/j.msea.2020.139664

Huo WT, Shi JT, Hou LG, Zhang JS. An improved thermo- mechanical treatment of high-strength Al-Zn-Mg-Cu alloy for effective grain refinement and ductility modification. Journal of Materials Processing Technology. 2017 Jan 1;239:303-14.
https://doi.org/10.1016/j.jmatprotec.2016.08.027

Jin H, Guan R, Huang X, Fu Y, Zhang J, Chen X, Wang Y, Gao F, Tie D. Understanding the precipitation mechanism of copper- bearing phases in Al-Mg-Si system during thermo-mechanical treatment. Journal of Materials Science & Technology. 2022 Jan 10;96:226-32.
https://doi.org/10.1016/j.jmst.2021.04.026

Gwalani B, Gorsse S, Choudhuri D, Styles M, Zheng Y, Mishra RS, Banerjee R. Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo- mechanical processing. Acta Materialia. 2018 Jul 1;153:169-85.
https://doi.org/10.1016/j.actamat.2018.05.009

Andrew Raiko, Hannu Hanninen, Hannu Vuorikari, Anisotropic distribution of non metallic inclusions in forged steel roll and its influence on fatigue limit, International Journal of Fatigue, vol. 41, 2012, 158-167.
https://doi.org/10.1016/j.ijfatigue.2011.12.023

Tiryakioglu M, Statistical distributions for the size of fatigue- initiating defects in Al-7%Si-0.3%Mg alloy castings: a comparative study, Mater Science and Engineering A, vol. 497, 2008,119-125.
https://doi.org/10.1016/j.msea.2008.06.023

Pessard E, Morel F, Morel A, Bellett D, Modelling the role of non-metallic inclusions on the anisotropic fatigue behaviour of forged steel. International Journal of Fatigue, 2011, vol. 33,568- 577.
https://doi.org/10.1016/j.ijfatigue.2010.10.012

Ma J, Zhang B, Xu D, Han E, Ke W, Effects of inclusion and loading direction on the fatigue behavior of hot rolled low carbon steel, International Journal of Fatigue, 2010, vol. 32, 1116- 1125.
https://doi.org/10.1016/j.ijfatigue.2009.12.005

Wallin K. Statistical uncertainty in the fatigue threshold staircase method. International Journal of Fatigue, 2011, vol. 33, 354- 362.
https://doi.org/10.1016/j.ijfatigue.2010.09.013

Kunc R, Prebil I, Low cycle fatigue properties of steel 42CrMo4, Materials Science and Engineering A, 2003, vol.345, 278-285.
https://doi.org/10.1016/S0921-5093(02)00464-1

Murakami Y, Metal fatigue: effects of small defects and nonmetallic inclusion. Kyushu University: Elsevier; 2002.

Tiryakioglu M, On the size distribution of fracture-initiating defects in Al- and Mg-alloy castings. Materials Science and Engineering A, 2008, vol. 476, 174-177.
https://doi.org/10.1016/j.msea.2007.04.088

Cyril N, Fatemi A, Experimental evaluation and modeling ofsulfur content and anisotropy of sulfide inclusions on fatigue behavior of steels. International Journal of Fatigue, 2009, vol. 31, 526-537.
https://doi.org/10.1016/j.ijfatigue.2008.04.001

Wallin K, Statistical aspects of fatigue life and endurance limit. Fatigue & Fracture of Engineering Materials and Structure, 2010, vol.33,333-344.
https://doi.org/10.1111/j.1460-2695.2010.01445.x

Piotr Skubisz, Lukasz Lisiecki, Piotr Micek, Effect of direct cooling conditions on characteristics of drop forged Ti+V+B microalloy steel, Procedia manufacturing, 2015, vol. 2, 428-433.
https://doi.org/10.1016/j.promfg.2015.07.075

M. Opiela: Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of Nb-Ti-V Microalloyed Steel. Journal of Materials Engineering and Performance, 2014, vol. 23 (9), 3379-3388.
https://doi.org/10.1007/s11665-014-1111-8

B.K. Show, R. Veerababu, R. Balamuralikrishnan, G. Malakondaiah, Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel, Materials Science and Engineering A, 2010, vol. 527, 1595-1604.
https://doi.org/10.1016/j.msea.2009.10.049

N.T. Switzner, C.J. Van Tyne, M.C. Mataya: Effect of forging strain rate and deformation temperature on the mechanical properties of warmworked 304L stainless steel. Journal of Materials Processing Technology, 2010, vol. 210, 998-1007.
https://doi.org/10.1016/j.jmatprotec.2010.01.014

P. Skubisz, J. Sinczak, T. Skowronek, M. Ruminski: Selection of Direct Cooling Conditions for Automotive Lever Made of Microalloy Steel, Archives of Civil and Mechanical Engineering, 2012, vol. 12, 418-426.
https://doi.org/10.1016/j.acme.2012.08.004

H.S. Fang, C. Feng, Y.K. Zheng, Z.G. Yang, B.Z. Bai: Creation of Air-Cooled Mn Series Bainitic Steels. Journal of Iron and Steel Research International, 2008, vol. 15, 01-09.
https://doi.org/10.1016/S1006-706X(08)60257-5

M. Opiela, A. Grajcar: Elaboration of forging conditions on the basis of the precipitation analysis of MX-type phases in microalloyed steels. Archives of Civil and Mechanical Engineering, 2012, vol. 12, 427-435.
https://doi.org/10.1016/j.acme.2012.06.013

D Rasouli, Sh. Khameneh Asl, A.Akbarzadeh, G H Daneshi, Effect of cooling rate on the microstructure and mechanical properties of microalloyed forging steel, Journal of Material Processing Technology,2008, vol. 206, 92-98.
https://doi.org/10.1016/j.jmatprotec.2007.12.006

Guduru R.K., Darling K.A., Kishore R., Scattergood R.O., Koch C.C., Murty K.L., Evaluation of mechanical properties using shear-punch testing. Materials Science and Engineering A, 2005, vol. 395, 307-314.
https://doi.org/10.1016/j.msea.2004.12.048

Gundu z a, S., Cochrane, R.C., Influence of cooling rate and tempering on precipitation and hardness of vanadium microalloyed steel. Materials and Design, 2005, vol. 26, 486- 492.
https://doi.org/10.1016/j.matdes.2004.07.022

Suleyman Gunduz, Ramazan Kacar, Huseyin S Soykan, Wear behavior of forging steels with different microstructure during dry sliding, Tribology International, 2008, vol. 41, 348-355.
https://doi.org/10.1016/j.triboint.2007.09.002

Gu¨ ndu¨z S, C- apar A. Influence of forging and cooling rate on microstructure and properties of medium carbon microalloy forging steel. Journal of Materials Science, 2006, vol. 41, 561- 564.
https://doi.org/10.1007/s10853-005-4239-y

Ollilainen V, Kasprzak W, Holappa L, The effect of silicon, vanadium and nitrogen on the microstructure and hardness of air cooled medium carbon low alloy steel, Journal of Materials Processing Technology, 2003, vol. 134,405-412.
https://doi.org/10.1016/S0924-0136(02)01131-7

Jahazi M, Eghbali B, The influence of hot forging conditions on the microstructure and mechanical properties of two microalloyed steels, Journal of Materials Processing Technology, 2001, vol. 113,594-598.
https://doi.org/10.1016/S0924-0136(01)00599-4

Das AS, Ghosh S, Chatterjee P, Rao R, The effect of cooling rate on structure and properties of a HSLA forging. Scripta Materialia, 2003, vol. 48, 51-57.
https://doi.org/10.1016/S1359-6462(02)00345-7

Sankaran S, Sarma VS, Padmanabhan KA. Low cycle fatigue behaviour of a multiphase microalloyed medium carbon steel: comparision between ferrite-pearlite and quenched and tempered microstructures, Materials Science and Engineering A, 2003, vol. 345, 328-335.
https://doi.org/10.1016/S0921-5093(02)00511-7

Karabulut H, Gundu z S. Effect of vanadium content on dynamic strain ageing in microalloyed medium carbon steel. Materials and Design, 2004, vol. 25, 521-527.
https://doi.org/10.1016/j.matdes.2004.01.005

Lin YC, Wang SW, Chen TM, A study on the wear behaviour of hardened medium carbon steel. Journal of Materials Processing Technology, 2002, vol. 120, 126-132.
https://doi.org/10.1016/S0924-0136(01)01195-5

Florian Summer, Florian Grun, Jurgen Schiffer, Istvan Godor, Ilias Papaddimitriou, Tribological study of crankshaft bearing systems: Comparision of forged steel and cast iron counterparts under start stop operation, Wear, 2015, vol. 338, 232-241.
https://doi.org/10.1016/j.wear.2015.06.022

F. Grün, I. Godor, W. Eichlseder, Test methods to characterize differently designed tribomaterials, Tribotest, 2008, vol. 14, 159- 176.
https://doi.org/10.1002/tt.57

K. S. Pondicherry, F. Grün, I. Gódor, R. Bertram, M. Offenbecher, Applicability of ring-on-disc and pin-on-plate test methods for Cu-steel and Al-steel systems for large area conformal contacts, Lubrication. Science. 2013, vol. 25, 231- 247.
https://doi.org/10.1002/ls.1187

M Pellizzari, M G De Flora, Influence of laser hardening on tribological properties of forged steels for hot rolls, Wear, 2011, vol. 271, 2402-2411.
https://doi.org/10.1016/j.wear.2011.01.044

G. Habedank, J. Woitschig, T. Seefeld, W. Juptner, F. Vollertsen, R. Baierl, H. Bomas, P. Mayr, R. Schroder, F. Jablonski, R. Kienzler, Endurance limit of pulsed laser hardened component- like specimens-Experiment and simulation, Materials Science and Engineering A, 2008, vol. 488, 358-371.
https://doi.org/10.1016/j.msea.2007.11.032

H. Zhang, Y. Shi, C.Y. Xu & M. Kutsuna (2004) Comparison of Contact Fatigue Strength of Carbon Case Hardening and Laser Hardening of Gears, Surface Engineering, 20:2, 117-120.
https://doi.org/10.1179/026708404225014915

K. Obergfell, V. Schulze, O. Vohringer, Classification of microstructural changes in laser hardened steel surfaces, Materials Science and Engineering A, 2003, vol. 355, 348-356.
https://doi.org/10.1016/S0921-5093(03)00099-6

F.H. Stott, M.P. Jordan, The effects of load and substrate hardness on the development and maintenance of wear protective layer during sliding at elevated temperatures, Wear, 2001, vol. 250, 391-400.
https://doi.org/10.1016/S0043-1648(01)00601-9

K. Sridhar, V.A. Katkar, P.K. Singh, J.M. Haake, Dry sliding friction wear behaviour of high power diode laser hardened steelsand cast iron, Surface Engineering. 2007, vol. 23, 129-141.
https://doi.org/10.1179/174329407X174461

S.M. Shariff, T.K. Pal, G. Padmanabham, S.V. Joshi, Sliding wear behaviour of laser surface modified pearlitic rail steel, Surface Engineering, 2010, vol. 26, 199-208.
https://doi.org/10.1179/174329409X455458

T. Shao, M. Hua, H.Y. Tam, Impact wear behavior of laser hardened hypoeutectoid 2Cr13 martensite stainless steel, Wear, 2003, vol. 255 444-455.
https://doi.org/10.1016/S0043-1648(03)00417-4

J.C.G. Milan, M.A. Carvalho, R.R. Xavier, S.D. Franco, J.D.B. DeMello, Effect of temperature, normal load and pre-oxidation on the sliding wear of multicomponent ferrous alloys, Wear, 2005,vol. 259, 412-423.
https://doi.org/10.1016/j.wear.2005.02.050

O Joos, C. Boher, C. Vergne, C. Gaspard, T. Nylen, F. Rezai- Aria, Assessment of oxide scales influence on wear damage mechanisms of HSM work rolls, Wear, 2007, vol. 263, 198-206.
https://doi.org/10.1016/j.wear.2007.02.005

M. Pellizzari, D. Cescato, M.G. De Flora, Hot friction and wear behaviour of high speed steel and high chromium iron for rolls, Wear, 2005, vol. 259, 1281-1289.
https://doi.org/10.1016/j.wear.2004.12.006

L G Garza, C J Van Tyne, Surface Hot-Shortness of 1045 forging steel with residual copper, Journal of Material Processing Technology, 2005, vol. 159, 169-180.
https://doi.org/10.1016/j.jmatprotec.2004.05.004

H. Fredriksson, K. Hansson, A. Olsson, On the mechanism of liquid copper penetration into iron grain boundaries, Scandinavian Journal of Metallurgy, 2001, vol. 30, 41-50.
https://doi.org/10.1034/j.1600-0692.2001.d01-36.x

Stefan Szczpanik, Piotr Nikiel, Stefan Charles Mitchell, Rudolf Kawalla, Microstructure evolution in warm forged sintered ultra- high carbon steel, Archives of Civil and Mechanical Engineering, 2015, vol.15, 301-307.
https://doi.org/10.1016/j.acme.2014.12.008

H. Zhang, B. Bai, D. Raabe, Superplastic martensitic Mn-Si- Cr- C steel with 900% elongation, Acta Materialia, 2011, vol. 59, 5787-5802.
https://doi.org/10.1016/j.actamat.2011.05.055

A.A.S. Abosbaia, S.C. Mitchell, M. Youseffi, A.S. Wronski, Liquid phase sintering, heat treatment and properties of ultrahigh carbon steel, Powder Metallurgy, 2011, vol. 54, 592-598.
https://doi.org/10.1179/1743290110Y.0000000004

S. Szczepanik, S.C. Mitchell, A.A.S. Abosbaia, A.S. Wronski, Warm forging of spheroidized ultrahigh carbon steel, Powder Metallurgy Progress, 2010, vol. 10, 59-65.

C kuel, V Wirths, W Bleck, New bainite steels for forging, Archives of Civil and Mechanical Engineering, 2012, vol. 12, 119-125.
https://doi.org/10.1016/j.acme.2012.04.012

E. Erisir, B. Zeislmair, C. Keul, Fk. Gerdemann,W. Blec, in: 19th International Forging Congress, Chicago, 2008, 177-188.

M.Cristinacce, P.E.Reynolds, in:C.J.VanTyne, G.Krauss, D.K. Matlock (Eds.), Fundamentals and Applications of Microalloying Forging Steels, MS, Warrendale, PA, 1996, 29- 43.

R.W.K. Honeycombe, H.K.D.H. Bhadeshia, Steels microstructure and properties, 1995, 2nd edition, Edward Arnold, London.

H.K.D.H. Bhadeshia, Bainite in Steels-Transformations, microstructure and Properties, 2001, 2nd edition, The Institute of Metals.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize