Open Access Open Access  Restricted Access Subscription or Fee Access

Mechanical Performance of Reinforced PMMA-Based Composites for Denture Materials: a Review


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i8.22564

Abstract


The main acrylic used to manufacture dentures is Polymethylmethacrylate (PMMA). Its mechanical properties have been improved through the incorporation of various particles of both micro and nano size and fibers. This article aims to review mechanical properties of PMMA-based denture materials. Particular attention is paid to the effect of adding fiber, filler, and nanofiller on the mechanical characteristics of PMMA. This review is based on scientific reviews, papers, and abstracts as well as studies published between 1980 and 2020 concerning the effects of surface modification, reinforcing agents, fillers, and fibers on mechanical properties of PMMA as a denture material. Numerous studies show that the addition of fibers and fillers and surface modification can strengthen the mechanical performance of PMMA-based denture materials. The results also show that most studies are limited to in vitro research without bioactivity and clinical consequences.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Mechanical Performance; Denture; Reinforcement; PMMA; Surface Modification

Full Text:

PDF


References


T.J. Sheng, M.F. Shafee, Z. Ariffin, M. Jaafar, Review on Poly-Methyl Methacrylate As Denture Base Materials, Malaysian Journal of Microscopy, vol. 14, n. 1, January 2018, pp. 1-16

T. Ghaffari, F. Hamedirad, B. Ezzati, In Vitro Comparison of Compressive and Tensile Strengths of Acrylic Resins Reinforced by Silver Nanoparticles at 2% and 0.2% Concentrations, Journal of Dental Research, Dental Clinics, Dental Prospects, vol. 8, n. 4, 2014, pp. 204-209

S. Zidan S, N. Silikas, J. Haider, A. Alhotan, J. Jahantigh, J. Yates, Assessing Tensile Bond Strength Between Denture Teeth and Nano-Zirconia Impregnated PMMA Denture Base, International Journal of Nanomedicine, vol. 15, December 2020, pp. 9611-9625.
https://doi.org/10.2147/IJN.S273541

K.V. Shenoy, P. Vishnu, K. Kannadasan, S. Kengagsubbiah, S. Kumar, Extra-Oral Approach for Removal of Ectopic Impacted Lower Third Molar: A Case Report, Journal of clinical and diagnostic research, vol. 8, n. 11, November 2014, pp. ZD27-ZD28.
https://doi.org/10.7860/JCDR/2014/10899.5210

S.K Devireddy, R.V.K. Kumar, R. Gali, S. Reddy, Transoral Versus Extraoral Approach for Mandibular Angle Fractures: A Comparative Study, Indian Journal of Plastic Surgery, vol. 47, n. 3, December 2014, pp. 354-61
https://doi.org/10.4103/0970-0358.146590

H. Sasaki, I. Hamanaka, Y. Takahashi, T. Kawaguchi, Effect of Long-term Water Immersion or Thermal Shock on Mechanical Properties of High-Impact Acrylic Denture Base Resins, Dental Materials Journal, vol. 35, n. 2, March 2016, pp. 204-209.
https://doi.org/10.4012/dmj.2015-291

D.T. de Castro, M.L. Valente, J.A. Agnelli, C.H.L. da Silva, E. Watanabe, R.L. Siqueira, O.L Alves, R.D. Holtz, A.C. dos Reis, In Vitro Study of The Antibacterial Properties and Impact Strength of Dental Acrylic Resins Modified with A Nanomaterial. Journal of Prosthetic Dentistry, vol. 115, n. 2, February 2016, pp. 238-46.
https://doi.org/10.1016/j.prosdent.2015.09.003

E. E Totu, A.C. Nechifor, G. Nechifor, H. Y. Aboul-Enein, C.M. Cristache, Poly(methyl methacrylate) with TiO2 Nanoparticles Inclusion for Stereolitographic Complete Denture Manufacturing − The Fututre In Dental Care For Elderly Edentulous Patients?, Journal of Dentistry, vol. 59, February 2017, pp. 68-77
https://doi.org/10.1016/j.jdent.2017.02.012

U.Y. Karatepe, T. Ozdemir, Improving Mechanical And Antibacterial Properties of PMMA via Polyblend Electrospinning With Silk Fibroin and Polyethyleneimine Towards Dental Applications, Bioactive Materials, vol. 5, n. 3, September 2020, pp. 510-515.
https://doi.org/10.1016/j.bioactmat.2020.04.005

M.M. Gad, A. Rahoma, R. Abualsaud, A.M. Al-Thobity, S. Akhtar, M.A. Helal, F.A. Al-Harbi, Impact of Different Surface Treatments and Repair Material Reinforcement on The Flexural Strength of Repaired PMMA Denture Base Material, Dental Materials Journal, vol. 39, n. 3, June 2020, pp. 471-482
https://doi.org/10.4012/dmj.2018-436

Z. Raszewski, A. Nowakowska-Toporowska, J. Wezgowiec, D. Nowakowska, Influence of Silanized Silica and Silanized Feldspar Addition on The Mechanical Behavior Of Polymethyl Methacrylate Resin Denture Teeth, Journal of Prosthetic Dentistry, vol. 123, n. 4, February 2020, pp. 647.e1-647.e7.
https://doi.org/10.1016/j.prosdent.2019.12.007

C.A. Harper, E.M. Petrie, Plastics Materials and Processes: A Concise Encyclopedia (John Wiley & Sons, Inc., Hoboken, New Jersey, 2003).

R.K. Alla, Dental Materials Science, 1st Edition (Jaypee Brothers Medical Publishers Pvt Limited, New Delhi, India, 2013, 333-354).

E.C. Combe, Notes on dental materials. 6th edition (London: Churchill Livingston, 1992).

K.J. Anusavice, R.W. Phillips, Science of Dental Materials, 11th edition (Elsevier, New Delhi, India, 2003: 721-758).

S.H. Mohamed, A.M. Al-Jadi, T. Ajaal T, Using of HPLC Analysis for Evaluation of Residual Monomer Content in Denture Base Material and Their Effect on Mechanical Properties, Journal of Physical Science, vol. 19, n. 2, January 2008, pp. 127-135.

Y.C. So,•J.K-H. Tsoi, J.P. Matinlinna, A New Approach to Cure and Reinforce Cold-Cured Acrylics, Silicon, vol. 4, July 2012, pp. 209-220.
https://doi.org/10.1007/s12633-012-9124-0

A. Mohammad, A. Aljafery, A. Sayhood, Wasna, Evaluation the tensile strength of Cold-Cured Acrylic Resin Denture Base Material by Adding Silver Nanoparticles, Indian Journal of Public Health Research & Development, vol. 9, n. 10, October 2018, pp. 951-956
https://doi.org/10.5958/0976-5506.2018.01258.5

B. Heidari, F. Firouz, A. Izadi, S. Ahmadvand, P. Radan, Flexural Strength of Cold and Heat Cure Acrylic Resins Reinforced with Different Materials, Journal of Dentistry (Tehran), vol. 12, n. 5, May 2015, pp. 316-323.

Y. Ucar, T. Akova, I. Aysan, Mechanical Properties of Polyamide Versus Different PMMA Denture Base Materials. Journal of Prosthodontics, vol. 21, n. 3, April 2012, pp. 173-176.
https://doi.org/10.1111/j.1532-849X.2011.00804.x

M. Ratanajanchai, W. Kanchanavasita, K. Suputtamongkol, A. Wonglamsam, S. Thamapipol, O. Sae-Khow, Heat-Cured Poly(Methyl Methacrylate) Resin Incorporated with Different Food Preservatives as an Anti-Microbial Denture Base Material, Journal of Dental Sciences, vol. 16, n. 2, March 2021, pp. 706-712.
https://doi.org/10.1016/j.jds.2020.09.006

Nejatian, T., Pezeshki, S., Yaqin Syed, A.U., Acrylic denture base materials, In Z. Khurshid, S. Najeeb, M.S. Zafar, F. Sefat, (Ed.), 5 Advanced Dental Biomaterials (Woodhead Publishing: Cambridge, UK, 2019, 79-104).
https://doi.org/10.1016/B978-0-08-102476-8.00005-0

S.A. Asal, M.M. Fahmy, S.M. Abdulla, Chromatic stability of light-activated resin and heat-cure acrylic resin submitted to accelerated aging, The Saudi Journal for Dental Research, vol. 6, n. 1, January 2015, pp. 41-47.
https://doi.org/10.1016/j.sjdr.2014.06.003

M.S. Zafar, Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update, Polymers (Basel), vol. 12, n. 10, October 2020, 2299
https://doi.org/10.3390/polym12102299

S.A. Asal, H.M. Al-AlShiekh, Heat-Cured Acrylic Resin Versus Light-Activated Resin: A Patient, Professional and Technician-Based Evaluation of Mandibular Implant-Supported Overdentures, Nigerian Journal Clinical Practice, vol. 20, n. 12, December 2017, pp. 1596-1603.

N.W. Elshereksi, M.J. Ghazali, A. Muchtar, C.H. Azhari, Perspectives for Titanium-Derived Fillers Usage on Denture Base Composite Construction: A Review Article, Advances in Materials Science and Engineering, vol. 2014, July 2014, 746252.
https://doi.org/10.1155/2014/746252

M. Hassan, M. Asghar, S.U. Din, M.S. Zafar, Chapter 8 - Thermoset polymethacrylate-based materials for dental applications, In V. Grumezescu, A.M. Grumezescu (Ed), Materials for Biomedical Engineering (Elsevier: Amsterdam, The Netherlands, 2019, 273-308).
https://doi.org/10.1016/B978-0-12-816874-5.00008-6

R. Tandon, S. Agarwal, Denture Base Materials: From Past to Future, Indian Journal of Dental Science, vol. 2, n. 2, March 2010, pp. 33-39.

S.E. Ozkir, B. Yilmaz, S.M. Unal, A. Culhaoglu, I. Kurkcuoglu, Effect of Heat Polymerization Conditions and Microwave on The Flexural Strength of Polymethyl Methacrylate, European Journal of Dentistry, vol. 12, n. 1, Jan-Mar 2018, pp. 116-119.
https://doi.org/10.4103/ejd.ejd_199_17

N.A. Abdulhameed, Flaskless Curing of Acrylic Dentures by Microwave Energy, EC Dental Science, vol. 5, n. .6, 2016, pp. 1202-1207.

M.J. Azzarri, M.S. Cortizo, J.L. Alessandrini, Effect of The Curing Conditions on The Properties of An Acrylic Denture Base Resin Microwave-Polymerised, Journal of Dentistry, vol. 31, n. 7, September 2003, pp. 463-468.
https://doi.org/10.1016/S0300-5712(03)00090-3

G. Madan, S. Madan, G. Madan, Comparison of Polymethyl Methacrylate Curing by Conventional Hot-Water Bath and Microwave Energy, International Journal of Dental Clinics, vol. 6, 2014.

J.N. Palaskar, S. Singh, S. Mittal, Evaluation and Comparison of Different Polymerization Techniques, Curing Cycles, and Thicknesses Of Two Denture Base Materials, Indian Journal of Dental Research, vol. 30, n. 4, Jul-Aug 2019, pp. 583-589.
https://doi.org/10.4103/ijdr.IJDR_170_16

E. Chauveau, C. Marestin, V. Martin, R. Mercier, Microwave-Assisted Polymerization Process: A Way to Design New, High Molecular Weight Poly(arylimidazole)s, Polymer, vol. 49, n. 24, November 2009, pp. 5209-5214.
https://doi.org/10.1016/j.polymer.2008.09.042

R.M.S. Figuerôa, B. Conterno, C.A.G. Arrais, C.Y.C. Sugio, V.M. Urban, K.H. Neppelenbroek, Porosity, Water Sorption and Solubility of Denture Base Acrylic Resins Polymerized Conventionally or In Microwave, Journal of Applied Oral Science, vol. 26, May 2018, e20170383.
https://doi.org/10.1590/1678-7757-2017-0383

A.C. Schoeffel, P. Bagio, V.T. Sakima, S. Soares, K.H. Neppelenbroek, V.M. Urban, Knoop Microhardness of Conventional and Microwaved Denture Base Acrylic Resins, Indian Journal of Dentistry Research, vol. 30, n. 6, Nov-Dec 2019, pp. 927-932.
https://doi.org/10.4103/ijdr.IJDR_436_17

S. Somkuwar, S.K. Mishra, B. Agrawal, R. Choure, Comparison of The Flexural Strength of Polymethyl Methacrylate Resin Reinforced with Multiwalled Carbon Nanotubes and Processed by Conventional Water Bath Technique and Microwave Polymerization, The Journal of Indian Prosthodontic Society, vol. 17, n. 4, Oct-Dec. 2017, pp. 332-339.
https://doi.org/10.4103/jips.jips_137_17

N. El-wakiel, Y.S. El-Sayed, H. Elkafrawy, Synthesis, Characterization of Ag+ and Sn2+ Complexes and Their Applications to Improve the Biological and Mechanical Properties of Denture Base Materials, Journal of Molecular Structure, vol. 1219, November 2020, pp.128521.
https://doi.org/10.1016/j.molstruc.2020.128521

Z. Raszewski, Influence of Polymerization Method on The Cytotoxicity of Three Different Denture Base Acrylic Resins Polymerized in Different Methods, Saudi Journal of Biological Sciences, vol. 27, n. 10, October 2020, pp. 2612-2616.
https://doi.org/10.1016/j.sjbs.2020.05.039

N. Polychronakis, M. Dimitriadi, A. Ioannidis, T. Papadopoulos, The Effect of Different Cooling Procedures on Mechanical Properties of Denture Base Materials Measured by Instrumented Indentation Testing, Journal of Prosthodontic Research, vol. 64, n. 3, July 2020, pp. 326-331.
https://doi.org/10.1016/j.jpor.2019.09.005

T. Nejatian, N. Nathwani, L. Taylor, F. Sefat, Denture Base Composites: Effect of Surface Modified Nano- and Micro-Particulates on Mechanical Properties of Polymethyl Methacrylate, Materials (Basel), vol. 13, n. 2, May 2020, pp. 307.
https://doi.org/10.3390/ma13020307

N.W. Elshereksi, A Muchtar, C.H. Azhari, Effects of Nanobarium Titanate on Physical And Mechanical Properties of Poly(Methyl Methacrylate) Denture Base Nanocomposites, Polymers and Polymer Composites, May 2020.
https://doi.org/10.1177/0967391120926442

L.J. Rickman, P. Padipatvuthikul, J.D. Satterthwaite, Contemporary Denture Base Resins: Part 1, Dental Update, vol. 39, n. 1, Jan-Feb. 2012, pp. 25-30.
https://doi.org/10.12968/denu.2012.39.1.25

R. Karthick, P. Sirisha, M. Sankar, Mechanical and Tribological Properties of PMMA-Sea Shell based Biocomposite for Dental Application, Procedia Materials Science, vol. 6, 2014, pp. 1989-2000.
https://doi.org/10.1016/j.mspro.2014.07.234

A.M Al-Thobity, The Impact of Polymerization Technique and Glass-Fiber Reinforcement on the Flexural Properties of Denture Base Resin Material, European Journal of Dentistry, vol. 14, n. 1, March 2020, pp. 92-99.
https://doi.org/10.1055/s-0040-1701922

M.V. Somani, M. Khandelwal, V. Punia, V. Sharma, The Effect of Incorporating Various Reinforcement Materials on Flexural Strength and Impact Strength of Polymethylmethacrylate: A Meta-Analysis, The Journal of Indian Prosthodontic Society, vol. 19, n. 2, Apr-Jun 2019, pp. 101-112.
https://doi.org/10.4103/jips.jips_313_18

S.A. Hannon, W.A. Hussain, S.M. Hussain, Studying the Impact Strength of Layered Denture Base Resin, Iraqi Journal of Physics, vol. 18, n. 44, February 2020, pp. 25-32.
https://doi.org/10.30723/ijp.v18i44.495

T. Kawaguchi, L.V. Lassila, H. Baba, S. Tashiro, I. Hamanaka, Y. Takahashi, P. K. Vallittu, Effect of Cellulose Nanofiber Content on Flexural Properties of A Model, Thermoplastic, Injection-Molded, Polymethyl Methacrylate Denture Base Material, Journal of the Mechanical Behavior of Biomedical Materials, vol. 102, February 2020, 103513.
https://doi.org/10.1016/j.jmbbm.2019.103513

U.M. Abdel-Karim, E. Kenawy, Synthesis of Zirconia, Organic and Hybrid Nanofibers for Reinforcement of Polymethyl Methacrylate Denture Base: Evaluation of Flexural Strength and Modulus, Fracture Toughness and Impact Strength, Tanta Dental Journal, vol. 16, n. 1, 2019, pp. 12-20.

A. Mousavi, M.R.M. Aliha, D.M. Imani, Effects of Biocompatible Nanofillers on mixed-mode I and II Fracture Toughness of PMMA Base Dentures, Journal of the Mechanical Behavior of Biomedical Materials, vol. 103, March 2020, 103566.
https://doi.org/10.1016/j.jmbbm.2019.103566

G. Zappini, A. Kammann, W. Wachter, Comparison of Fracture Tests of Denture Base Materials, Journal of Prosthetic Dentistry, vol. 90, n. 6, December 2003, pp. 578-585.
https://doi.org/10.1016/j.prosdent.2003.09.008

G.D. Stafford, R. Huggett, B.E. Causton, Fracture Toughness Of Denture Base Acrylics, Journal of Biomedical Materials Research, vol. 14, n. 4, July 1980, pp.359-71.
https://doi.org/10.1002/jbm.820140403

S. Watanabe, Y. Ishida, D. Miura, T. Miyasaka, A. Shinya, Development of a Weight-Drop Impact Testing Method for Dental Applications, Polymers (Basel), vol. 12, n. 12, November 2020, 2803.
https://doi.org/10.3390/polym12122803

T. Xia, Y. Ye, W.L. Qin, Acrylonitrile-butadiene-styrene colored with a nanoclay-based filler: mechanical, thermal and colorimetric properties, Polymer Bulletin, vol. 76, 1019, pp. 3769-3784.
https://doi.org/10.1007/s00289-018-2580-y

M. B. Kulkarni, P. A. Mahanwar, Effect of Methyl Methacrylate-Acrylonitrile -Butadiene-Styrene (MABS) on the Mechanical and Thermal Properties of Poly (Methyl Methacrylate) (PMMA)-Fly Ash Cenospheres (FAC) Filled Composites, Journal of Minerals & Materials Characterization & Engineering, vol. 11, n..4, 2012, pp.365-383.
https://doi.org/10.4236/jmmce.2012.114027

M.S. Zafar, Wear Behavior of Various Dental Restorative Materials, Materials Technology, vol.34, n. 1, April 2018, pp. 25-31
https://doi.org/10.1080/10667857.2018.1462978

F.D. Angelis, C. D'Arcangelo, N. Malíšková, L. Vanini, M. Vadini, Wear Properties of Different Additive Restorative Materials Used for Onlay/Overlay Posterior Restorations, Operative Dentistry, vol. 45, n. 3, May 2020, pp. E156-E166.
https://doi.org/10.2341/19-115-L

T. Liang, C. Yan, S. Zhou, Y. Zhang, B. Yang, Carbon black reinforced polymethyl methacrylate (PMMA)-based composite particles: preparation, characterization, and application, Journal of Geophysics and Engineering, vol.14, n. 5, October 2017, pp. 1225-1232.
https://doi.org/10.1088/1742-2140/aa6e7e

Y. Lu, W. Zhang, X. Li, S. Xu, Synthesis of new polyether titanate coupling agents with different polyethyleneglycol segment lengths and their compatibilization in calcium sulfate whisker/poly(vinyl chloride) composites, RSC Advances, vol. 7, 2017, pp. 31628-31640.
https://doi.org/10.1039/C7RA03692B

I. Sideridou, M.M Karabela, Effect of The Amount of 3-Methacyloxypropyltrimethoxysilane Coupling Agent on Physical Properties of Dental Resin Nanocomposites, Dental Materials, vol. 25, n. 11, November 2009, pp. 1315-1324.
https://doi.org/10.1016/j.dental.2009.03.016

P. Chaijareenont, H. Takahashi, N. Nishiyama, M. Arksornnukit, Effect of Different Amounts of 3-Methacryloxypropyltrimethoxysilane on The Flexural Properties and Wear Resistance of Alumina Reinforced PMMA, Dental Materials Journal, vol. 31, n. 4, 2012, pp. 623-8.
https://doi.org/10.4012/dmj.2012-056

J. Antonucci, S. Dickens, B. Fowler, H. Xu, W. Mcdonough, Chemistry of Silanes: Interfaces in Dental Polymers and Composites, Journal of research of the National Institute of Standards and Technology, vol. 110, n. 5, September 2005, pp. 541-558.
https://doi.org/10.6028/jres.110.081

S. Atsü, Y. Keskİn, Effect Of Silica Coating And Silane Surface Treatment on The Bond Strength of Soft Denture Liner to Denture Base Material, Journal of Applied Oral Science, vol.21 no.4, July/Aug. 2013, pp. 300-306.
https://doi.org/10.1590/1678-775720130066

Y.M. Bian, X.Y. Zhang, B.S. Zhu, W.Q. Yu, D.P. Ruan, M. Min, Influence of different amount of silane coupling agent on the flexural strength of PMMA/nanometer ZrO2 composites, Shanghai Kou Qiang Yi Xue = Shanghai Journal of Stomatology, vol. 16, n. 3, June 2007, pp. 319-323.

N.W. Elshereksi, M.J. Ghazali, A. Muchtar, C.H. Azhari, Studies on The Effects of Titanate and Silane Coupling Agents on The Performance of Poly (Methyl Methacrylate)/Barium Titanate Denture Base Nanocomposites, Journal of Dentistry, vol. 56, January 2017, pp. 121-132.
https://doi.org/10.1016/j.jdent.2016.11.012

Y.W. Chen-Yang, C.W. Chen, S.C. Tseng, J. Huang, Y.Z. Wu, Surface Modification of Bi-Axially Expanded Poly(Tetrafluoroethylene) by Plasma Polymerization of Ethylene, Surface and Coatings Technology, vol.176, n.2, January 2004, pp. 148-156.
https://doi.org/10.1016/S0257-8972(03)00633-9

Q. Lv, C. Cao, H. Zhu, Blood Compatibility of Polyurethane Immobilized with Acrylic and Plasma Grafting Sulfonic Acid, Journal of Materials Science: Materials in Medicine, vol. 15, n. 5, May 2004, pp. 607-611.
https://doi.org/10.1023/B:JMSM.0000026382.34900.b6

G. Assero, C. Satriano, G. Lupo, C.D. Anfuso, G. Marletta, M. Alberghina, Pericyte Adhesion and Growth Onto Polyhydroxymethylsiloxane Surfaces Nanostructured By Plasma Treatment and Ion Irradiation, Microvascular Research, vol. 68, n. 3, November 2004, pp. 209-220
https://doi.org/10.1016/j.mvr.2004.08.003

Y. Ohkubo, K. Endo, K. Yamamura, Adhesive-Free Adhesion Between Heat-Assisted Plasma-Treated Fluoropolymers (PTFE, PFA) and Plasma-Jet-Treated Polydimethylsiloxane (PDMS) and Its Application, Scientific Reports, vol. 8, December 2018, 18058.
https://doi.org/10.1038/s41598-018-36469-y

A. Liebermann, C. Keul, N. Bähr, D. Edelhoff, Impact of Plasma Treatment of PMMA-based CAD/CAM Blanks on Surface Properties As Well As on Adhesion to Self-Adhesive Resin Composite Cements, Dental Materials, vol. 29, n. 9, September 2013, pp. 935-944.
https://doi.org/10.1016/j.dental.2013.06.004

E.M. Liston, L. Martinu, M.R. Wertheimer, Plasma Surface Modification of Polymers for Improved Adhesion: A Critical Review, Journal of Adhesion Science and Technology, vol. 7, n. 10, 1993, pp. 1091-1127.
https://doi.org/10.1163/156856193X00600

M. Collaud, P. Groening, S. Nowak, L. Schlapbach, Plasma Treatment of Polymers: The Effect of The Plasma Parameters on The Chemical, Physical, and Morphological States of The Polymer Surface and on The Metal Polymer Interface, Journal of Adhesion Science and Technology, vol. 8, n. 10, 1994, pp. 1115-1127.
https://doi.org/10.1163/156856194X00979

P. Yavirach, P. Chaijareenont, D. Boonyawan, K. Pattamapun, S. Tunma, H. Takahashi, M. Arksornnukit, Effects of Plasma Treatment on the Shear Bond Strength Between Fiber-Reinforced Composite Posts and Resin Composite for Core Build-up, Dental Materials Journal, vol. 28, n. 6, November 2009, pp. 686-692-
https://doi.org/10.4012/dmj.28.686

X. Dong, A.C. Ritts, C. Staller, Q. Yu, Evaluation of Plasma Treatment Effects on Improving Adhesive-Dentin Bonding by Using the Same Tooth Controls and Varying Cross-Sectional Surface Areas, European Journal of Oral Sciences, vol. 121, n. 4, August 2013, pp. 355-362.
https://doi.org/10.1111/eos.12052

K Soygun, E Tamam, A Doğan, S Keskin, Does the Plasma Application Time Affect the Tensile Bond Strength between PMMA and a Silicone Based Denture Liner?, Nigerian Journal of Clinical Practice, vol. 23, n. 9, September 2020, pp. 1266-1273.
https://doi.org/10.4103/njcp.njcp_692_19

H. Zhang, J. Fang, Z. Hu, J. Ma, Han Yi, Bian J. Effect of Oxygen Plasma Treatment on The Bonding of A Soft Liner to An Acrylic Resin Denture Material, Dental Materials Journal, vol. 29, n. 4, August 2010, pp. 398-402.
https://doi.org/10.4012/dmj.2009-124

H. Zhang, L Liu, F. Fang, Effects of Plasma Treatment Time on Modification of Acrylic Denture Material, Journal of Nanjing Medical University, vol. 21, n. 5, September 2007, pp. 337-340.
https://doi.org/10.1016/S1007-4376(07)60073-2

A.Z.Y. Biçer, A. Doğan, S. Keskin, O.M. Doğan, Effect of Argon Plasma Pretreatment on Tensile Bond Strength of A Silicone Soft Liner to Denture Base Polymers, The Journal of Adhesion, vol. 89, 2013, pp. 594 610.
https://doi.org/10.1080/00218464.2013.768123

R. Alla, K.N. Raghavendra, R. Vyas, A. Konakanchi, Conventional and Contemporary Polymers for The Fabrication of Denture Prosthesis: Part I - Overview, Composition and Properties, International Journal of Applied Dental Sciences, vol. 1, n. 4, 2015, pp. 82-89.

S.R. Bhattacharya, P.K. Ray, M. Makhal, S.K. Sen, Incidence and Causes of Fracture of Acrylic Resin Complete Denture, Journal of Evolution of medical and Dental Sciences, vol. 3, n. 69, 2014, pp.14787-14793.
https://doi.org/10.14260/jemds/2014/3986

E.P. Johnston,J.I. Nicholls, D.E. Smith, Flexure Fatigue of 10 Commonly Used Denture Base Resins, The Journal of Prosthetic Dentistry, vol. 46, n. 5, November 1981, pp. 478-48.
https://doi.org/10.1016/0022-3913(81)90232-8

A.R. Ruffino, Effect of Steel Strengtheners on Fracture Resistance of The Acrylic Resin Complete Denture Base, The Journal of Prosthetic Dentistry, vol. 54, n. 1, July 1985, pp. 75-78.
https://doi.org/10.1016/S0022-3913(85)80074-3

P.K. Vallittu, V.P. Lassila, Effect of Metal Strengthener's Surface Roughness on Fracture Resistance of Acrylic Denture Base Material, Journal of Oral Rehabilitation, vol. 19, n. 4, July 1992, pp. 385-391.
https://doi.org/10.1111/j.1365-2842.1992.tb01580.x

D.L. Gutteridge, The Effect of Including Ultra-High-Modulus Polyethylene Fibre on The Impact Strength of Acrylic Resin, British Dental Journal, vol.164, n. 6, March 1988, pp.177-180.
https://doi.org/10.1038/sj.bdj.4806395

R. Alla, S. Sajjan, V. Alluri, K. Ginjupalli, N.U. Padhya, Influence of Fiber Reinforcement on The Properties of Denture Base Resins, Journal of Biomaterials and Nanobiotechnology, vol. 4, n. 1, January 2013, pp. 91-97.
https://doi.org/10.4236/jbnb.2013.41012

V. Moreno-Maldonado, L.S. Acosta-Torres, F.H. Barcelo-Santana, R.D. Vanegas-Lancon, M.E. Plata-Rodrı'guez, V.M. Castano, Fiber-Reinforced Nanopigmented Poly(Methyl Methacrylate) as Improved Denture, Journal of Applied Polymer Science, vol. 26, n.1, October 2012, pp. 289-296.
https://doi.org/10.1002/app.36913

S. Gokul, S.C. Ahila, B.M. Kumar, Effect of E-glass Fibers with Conventional Heat Activated PMMA Resin Flexural Strength and Fracture Toughness of Heat Activated PMMA Resin, Annals of Medical and Health Sciences Research, vol. 8, 2018, pp. 189-192.

M. Mathew, K. Shenoy, K.S Ravishankar, Flexural Strength of E-glass-reinforced PMMA, International Journal of Experimental Dental Science, vol. 3, n. 1, January-June 2014, pp. 24-28.
https://doi.org/10.5005/jp-journals-10029-1063

M. Mathew, K. Shenoy, K.S. Ravishankar, Flexural Strength of Hydrogen Plasma-Treated Polypropylene Fiber-Reinforced Polymethyl Methacrylate Denture Base Material, The Journal of Indian Prosthodontic Society, vol. 18, n. 3, Jul-Sep. 2018, pp. 257-262.
https://doi.org/10.4103/jips.jips_295_17

Z. Raszewski, D. Nowakowska, Mechanical Properties of Poured Aramid Fiber Reinforced Acrylic Resin Depending on Fiber Quantity, Fiber Position and Different Wetting Agents, Dental and Medical Problems, vol. 48, n. 3, 2011, pp. 380-387.

C. Bacali, M. Constantiniuc, M. Moldovan, V. Nastase, M. Badea, A. Constantin, Reinforcement of PMMA Denture Base Resins: From Macro To Nano Scale, Biomaterials, vol. 23, n. 3, July 2019, pp. 374-378.

K. Soygun, G. Bolayir, A. Boztug, Mechanical and Thermal Properties of Polyamide Versus Reinforced PMMA Denture Base Materials, The Journal of Advanced Prosthodontics, vol. 5, n. 2, May 2013, pp. 153-160.
https://doi.org/10.4047/jap.2013.5.2.153

M. Vojdani, R. Giti, Polyamide as a Denture Base Material: A Literature Review, Journal of Dentistry Shiraz University of Medical Sciences, vol. 16(1 Suppl), March 2015, pp. 1-9.

N. Prajwala, C.R. Kumar, M Sujesh, D.C. Rao, L. Pavani, Denture Base Reinforcing Materials - A review, IP Annals of Prosthodontics and Restorative Dentistry, vol. 6, n. 2, 2020, pp. 52-59.
https://doi.org/10.18231/j.aprd.2020.014

H. Agha, R. Flinton, T. Vaidyanathan, Optimization of Fracture Resistance and Stiffness of Heat-Polymerized High Impact Acrylic Resin with Localized E-Glass Fiber Reinforcement at Different Stress Points, Journal of Prosthodontics, vol. 25, n. 8, December 2016, pp. 647-655.
https://doi.org/10.1111/jopr.12477

P. K. Vallittu, Curing of a Silane Coupling Agent and Its Effect on The Transverse Strength of Autopolymerizing Polymethylmethacrylate-Glass Fibre Composite, Journal of Oral Rehabilitation, vol. 24, no. 2, February 1997, pp. 124-130.
https://doi.org/10.1046/j.1365-2842.1997.00464.x

N. Deepan, C.A. Prakash, K.B. Rao, A. Sonthalia, In vitro Evaluation and Comparison of Transverse and Impact Strength of Heat Polymerized Acrylic Resin Reinforced with Polyethylene Fibers and Polypropylene fibers, Journal of Advanced Medical and Dental Sciences Research, vol. 2, n. 2, Apr-Jun 2014, pp. 46-56.

Y. Y. Cheng, T. W. Chow BDS, Fabrication of Complete Denture Bases Reinforced with Polyethylene Woven Fabric, Journal of Prosthodontics, vol. 8, n. 4, December 1999, pp. 268-272.
https://doi.org/10.1111/j.1532-849X.1999.tb00050.x

I.J. Ismaeel, H.A. Alalwan, M.J. Mustafa, The Effect of the Addition of Silanated Polypropylene Fiber to Polymethylmethacrylate Denture Base Material on Some of Its Mechanical Properties, Journal of Baghdad College Dentistry, vol. 27, n. 1, 2015, pp. 40-47.
https://doi.org/10.12816/0015263

M.M Gad, S.M. Fouda, F.A. Al-Harbi, R. Näpänkangas, A. Raustia, PMMA Denture Base Material Enhancement: A Review of Fiber, Filler, and Nanofiller Addition, International Journal of Nanomedicine, vol. 12, May 2017, pp. 3801-3812.
https://doi.org/10.2147/IJN.S130722

. N. Yunus, A.A. Rashid, L.L. Azmi, M.I. Abu-Hassan, Some Flexural Properties of A Nylon Denture Base Polymer, Journal of Oral Rehabilitation, vol. 32, n. 1, January 2005, pp. 65-71.
https://doi.org/10.1111/j.1365-2842.2004.01370.x

Y. Takabayashi, Characteristics of Denture Thermoplastic Resins for Non-Metal Clasp Dentures. Dent Mater J, 29(4):353-61, 2010.
https://doi.org/10.4012/dmj.2009-114

I. Hamanaka, Y. Takahashi, H. Shimizu, Mechanical Properties of Injection-Molded Thermoplastic Denture Base Resins, Acta Odontologica Scandinavica, vol. 69, n. 2, March 2011, pp. 75-79.
https://doi.org/10.3109/00016357.2010.517557

J. Xu, Y. Li, T. Yu, L. Cong, Reinforcement of Denture Base Resin with Short Vegetable Fiber, Dental Materials, vol. 29, n. 12, December 2013, pp. 1273-1279.
https://doi.org/10.1016/j.dental.2013.09.013

J.K. Oleiwi, S.I. Salih, H.S. Fadhil, Study Compression and Impact Properties of PMMA Reinforced by Natural Fibers Used in Denture, Engineering and Technology Journal, vol. 36, Part A, n. 6, 2018, pp. 652-655.
https://doi.org/10.30684/etj.36.6A.9

M.S. Wolff, C. Larson, The Cariogenic Dental Biofilm: Good, Bad or Just Something to Control? Brazilian Oral Research, vol.23 supl.1, June 2009, pp. 31-38.
https://doi.org/10.1590/S1806-83242009000500006

Y. Yang, Y. Chen, F. Leng, L. Huang, Z. Wang, W. Tian, Recent Advances on Surface Modification of Halloysite Nanotubes for Multifunctional Applications, Applied Sciences, vol. 7, n. 12, 2017, 1215.
https://doi.org/10.3390/app7121215

G. Cavallaro, A.A. Danilushkina, V.G. Evtugyn, G. Lazzara, S. Milioto, F. Parisi, E.V. Rozhina, R.F. Fakhrullin, Halloysite Nanotubes: Controlled Access and Release by Smart Gates, Nanomaterials, vol. 7, n. 8, 2017, 199.
https://doi.org/10.3390/nano7080199

F.W. Degrazia, V.C.B. Leitune, I.M. Garcia, R.A. Arthur, S.M.W. Samuel, F.M. Collares, Effect of Silver Nanoparticles on The Physicochemical and Antimicrobial Properties of An Orthodontic Adhesive, Journal of Applied Oral Science, vol. 24, n. 4, 2016, pp. 404-419.
https://doi.org/10.1590/1678-775720160154

A Alrahlah, H. Fouad, M. Hashem, A.A. Niazy, A. AlBadah, Titanium Oxide (TiO)/Polymethylmethacrylate (PMMA) Denture Base Nanocomposites: Mechanical, Viscoelastic and Antibacterial Behavior, Materials (Basel), vol. 11, n. 7, July 2018, 1096.
https://doi.org/10.3390/ma11071096

B.A. Sabri, M. Satgunam, N.M. Abreeza, A.N. Abed, A Review on Enhancements of PMMA Denture Base Material with Different Nano-Fillers, Cogent Engineering, vol. 8, n. 1, 2021, 1875968.
https://doi.org/10.1080/23311916.2021.1875968

N.V. Asar, H. Albayrak, T. Korkmaz, I. Turkyilmaz, Influence of Various Metal Oxides on Mechanical and Physical Properties of Heat-Cured Polymethyl Methacrylate Denture Base Resins, The Journal of Advanced Prosthodontics, vol. 5, n. 3, August 2013, pp. 241-247.
https://doi.org/10.4047/jap.2013.5.3.241

S. Rudy, T. Ismiyati, E. Wahyuningtyas, The Effect of Zirconium Dioxide Nanoparticles Concentrations as Filler on Heat Cured Acrylic Resin Denture Base Toward Viability of Fibroblast Cells (In Vitro Study), Majalah Kedokteran Gigi Indonesia, vol. 6, n. 2, August 2020, pp. 71-76.
https://doi.org/10.22146/majkedgiind.44345

M. Vojdani, R. Bagheri, A.A.R. Khaledi, Effects of Aluminum Oxide Addition on the Flexural Strength, Surface Hardness, and Roughness of Heat-Polymerized Acrylic Resin, Journal of Dental Sciences, vol. 7, n. 3, September 2012, pp. 238-244.
https://doi.org/10.1016/j.jds.2012.05.008

P. M Aparna, K.H. Kumar, R Ravichandran, V. V Nair, H Zeenath, N.G. Manjuran, Comparison of Thermal Conductivity, Flexural Strength, and Surface Hardness of Alumina Incorporated and Conventional Heat-Activated Denture Base Resins, International Journal of Scientific Study, vol 8, n. 2, 2020, pp. 64-71.

A. Gandhe, B. Sannakki, Mechanical and Thermal Properties of PMMA with Al2O3 Composite Films, Indian Journal of Applied Research, vol. 3, n. 6, June 2011, pp. 455-456.
https://doi.org/10.15373/2249555X/JUNE2013/152

P. Pradeepa, G. Sowmya, S. Edwinraj, G. Fareetha Begum, M. Ramesh Prabhu, Influence of Al2O3 on the Structure and Electrochemical Properties of PVAc/PMMA Based Blend Composite Polymer Electrolytes, Materials Today: Proceedings, vol. 3, n. 6, 2016, pp. 2187-2196.
https://doi.org/10.1016/j.matpr.2016.04.125

M. Hummel, M. Kern, Durability of the Resin Bond Strength to the Alumina Ceramic Procera, Dental Materials, vol. 20, n. 5, June 2004, pp. 498-508.
https://doi.org/10.1016/j.dental.2003.10.014

S. Pollington, R. van Noort, An Update of Ceramics in Dentistry, International Journal of Clinical Dentistry, vol. 2, n. 4, 2011, pp. 3-27.

E. Kul, D.L.İ. Aladağ, R. Yesildal, Evaluation of Thermal Conductivity and Flexural Strength Properties of Poly(Methyl Methacrylate) Denture Base Material Reinforced with Different Fillers, The Journal of Prosthetic Dentistry, vol. 116, n. 5, 2016, pp. 803-810.
https://doi.org/10.1016/j.prosdent.2016.03.006

T-C Mo, H-W. Wang, S-Y. Chen, Y-C. Yeh, Synthesis and Characterization of Polyimide/Multi‐Walled Carbon Nanotube Nanocomposites, Polymer Composites, vol. 29, n. 4, April 2008, pp. 451-457.
https://doi.org/10.1002/pc.20468

V. Pichot, B. Risse, F. Schnell, J. Mory, D. Spitzer, Understanding Ultrafine Nanodiamond Formation Using Nanostructured Explosives, Scientific Reports, vol. 3, 2013, 2159.
https://doi.org/10.1038/srep02159

W. Li, X. Yu, K. Naito, H. Ding, X. Qu, Q. Zhang, Surface Functionalization and Disaggregation of Nanodiamonds via In Situ Copolymerization, Journal of Nanoscience and Nanotechnology, vol. 17, n. 12, December 2017, pp. 8883-8889.
https://doi.org/10.1166/jnn.2017.13863

S. Najeeb, Z. Khurshid, A.S. Agwan, M.S. Zafar, M. Alrahabi, B. Qasim, F. Sefat, Dental Applications of Nanodiamonds, Science of Advanced Materials, vol. 8, n. 11, 2016, pp. 2064-2070.
https://doi.org/10.1166/sam.2016.2993

P. Protopapa, E. Kontonasaki, D. Bikiaris, K.M. Paraskevopoulos, P. Koidis, Reinforcement of a PMMA Resin for Fixed Interim Prostheses with Nanodiamonds, Dental Materials Journal, vol. 30, n. 2, 2011, pp. 222-231.
https://doi.org/10.4012/dmj.2010-135

L.K. Foong, M.M. Foroughi, A.F. Mirhosseini, M. Safaei, S. Jahani, M. Mostafavi, N. Ebrahimpoor, M. Sharifi, R.S. Varma, M. Khatami, Applications of Nano-materials in Diverse Dentistry Regimes, RSC Advances, vol. 10, 2020, pp. 15430-15460.
https://doi.org/10.1039/D0RA00762E

F.A. Al-Harbi, M.S. Abdel-Halim, M.M. Gad, S.M. Fouda, N.Z. Baba, H.S. AlRumaih, S. Akhtar, Effect of Nanodiamond Addition on Flexural Strength, Impact Strength, and Surface Roughness of PMMA Denture Base, Journal of Prosthodontics, vol. 28, n. 1, January 2019, pp. e417-e425.
https://doi.org/10.1111/jopr.12969

U. Mangal, K.Y. Kim, J.Y. Seo, J.S. Kwon, S.H. Choi, Novel Poly(Methyl Methacrylate) Containing Nanodiamond to Improve the Mechanical Properties and Fungal Resistance, Materials (Basel), vol. 12, n. 20, October 2019, pp. 3438.
https://doi.org/10.3390/ma12203438

A.D. Salman, G.H. Jani, A.A. Fatalla, Comparative Study of the Effect of Incorporating SiO2 Nano-Particles on Properties of Poly Methyl Methacrylate Denture Bases, Biomedical and Pharmacology Journal, vol. 10, n. 3, 2017, pp. 1525-1535.
https://doi.org/10.13005/bpj/1262

H.J. Al-Judy, Effect of Addition of Silanized Silicon Carbide Nanoparticles on Some Physical Properties of Heat Cured Acrylic Denture Base Material, Journal of Research in Medical and Dental Science, vol. 6, n. 6, 2018, pp. 86-95.

S.T. Alzayyat, G.A. Almutiri, J. Aljandan, R.M. Algarzai, A. Matin, S.Q. Khan, S. Akhtar, M.M. Gad, Antifungal Efficacy and Physical Properties of Poly(methylmethacrylate) Denture Base Material Reinforced with SiO2 Nanoparticles, Journal of Prosthodontics, October 2020.
https://doi.org/10.1111/jopr.13271

S. Balos, T. Puskar, M. Potran, B. Milekic, D.D. Koprivica, J.L. Terzija, I. Gusic, Modulus, Strength and Cytotoxicity of PMMA-Silica Nanocomposites, Coatings, vol. 10, n. 6, June 2020, 583.
https://doi.org/10.3390/coatings10060583

S. Balos, B. Pilic, D. Markovic DDS, J. Pavlicevic, O. Luzanin, Poly(methyl-methacrylate) Nanocomposites with Low Silica Addition, The Journal of Prosthetic Dentistry, vol. 111, n. 4, April 2014, pp. 327-334.
https://doi.org/10.1016/j.prosdent.2013.06.021

H. Yang, S. Wu, J. Hu, Z. Wang, R. Wang, H. He, Influence of Nano-ZrO2 Additive on the Bending Strength and Fracture Toughness of Fluoro-Silicic Mica Glass-Ceramics, Materials and Design, vol. 32, n. 3, March 2011, pp. 1590-1593.
https://doi.org/10.1016/j.matdes.2010.09.008

S. Balos, B. Pilic, D. Petrovic, B. Petronijevic, I. Sarcev, Flexural Strength and Modulus of Autopolimerized Poly (Methyl Methacrylate) with Nanosilica, Vojnosanitetski Pregled, vol. 75, n. 6, 2018, pp. 564-56.
https://doi.org/10.2298/VSP160203359B

O. Bera, B. Pilić, J. Pavličević, M. Jovičić, B. Holló, K. Mészáros Szécsényi, M. Špirkova, Preparation and Thermal Properties of Polystyrene/Silica Nanocomposites, Thermochimica Acta, vol. 515, n. 1-2, March 2011, pp. 1-5
https://doi.org/10.1016/j.tca.2010.12.006

F. Yang, G.L. Nelson, PMMA/Silica Nanocomposite Studies: Synthesis and Properties, Journal of Applied Polymer Science, vol. 91, n. 6, March 2004, pp. 3844-3850.
https://doi.org/10.1002/app.13573

W.S. Chow, W.L. Tham, Z.A.M. Ishak, Improvement of Microstructure and Properties of Poly(Methyl methacrylate)/Hydroxyapatite Composites Treated with Zirconate Coupling Agent, Journal of Thermoplastic Composite Materials, vol 25, n. 2, 2012, pp. 165-180.
https://doi.org/10.1177/0892705711408163

S.M. Zebarjad, S.A. Sajjadi, T.E. Sdrabadi, A. Yaghmaei, B. Naderi, A Study on Mechanical Properties of PMMA/Hydroxyapatite Nanocomposite, Engineering, vol. 3, 2011, pp. 795-801.
https://doi.org/10.4236/eng.2011.38096

C.W. Shyang, L.Y. Khim, A. Ariffin, Z. Arifin, M. Ishak, Flexural Properties of Hydroxyapatite Reinforced Poly(Methyl Methacrylate) Composites, Journal of Reinforced Plastics and Composites, vol 27, n. 9, 2008, pp. 945-952.
https://doi.org/10.1177/0731684407086506

W.L. Tham, W.S. Chow, Z.A.M. Ishak, Simulated Body Fluid and Water Absorption Effects on Poly(Methyl methacrylate)/Hydroxyapatite Denture Base Composites, Express Polymer Letters, vol. 4, n. 9, August 2010, pp. 517-528.
https://doi.org/10.3144/expresspolymlett.2010.66

J.M. Aldabib, Z.A.M. Ishak, Effect of Hydroxyapatite Filler Concentration on Mechanical Properties of Poly (Methyl Methacrylate) Denture Base, SN Applied Sciences, vol. 2, 2020, 732.
https://doi.org/10.1007/s42452-020-2546-1

J. Móczó, B. Pukánszky, Particulate Fillers in Thermoplastics. In: S. Palsule, (Ed) Polymers and Polymeric Composites: A Reference Series, Springer, Berlin, Heidelberg, 2016
https://doi.org/10.1007/978-3-642-37179-0_7-2

S-Y. Fu, X-O. Feng, B. Lauke, Y-W. Mai, Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate-Polymer Composites, Composites Part B: Engineering, vol. 39, n. 6, September 2008, pp. 933-961.
https://doi.org/10.1016/j.compositesb.2008.01.002

Z.A. AL-Ramadhan, F.K. Farhan, R.A. Abdulrazaq, H.H. Khalaf, Improvement Mechanical Properties of PMMA Reinforced Bio ceramic material, Journal of Advanced Research in Dynamical and Control System, 06-Special Issue, 2018, pp. 1658-1667.

A. Alhareb, H. Md Akil, Z.A. Ahmad, Impact Strength, Fracture Toughness and Hardness Improvement of PMMA Denture Base Through Addition of Nitrile Rubber/Ceramic Fillers, The Saudi Journal for Dental Research, vol. 8, n. 1, Jan-Jul. 2016, pp. 1-9.
https://doi.org/10.1016/j.sjdr.2016.04.004

A. Köroğlu, O. Şahin, I. Kürkçüoğlu, D.Ö. Dede, T. Özdemir, B. Hazer, Silver Nanoparticle Incorporation Effect on Mechanical and Thermal Properties of Denture Base Acrylic Resins, Journal of Applied Oral Science, vol. 24, n. 6, November 2016, pp. 590-596.
https://doi.org/10.1590/1678-775720160185

A.D. Bona, O.E. Pecho, R. Alessandretti, Zirconia as a Dental Biomaterial, Materials (Basel), vol. 8. n. 8, August 2015, pp. 4978-4991.
https://doi.org/10.3390/ma8084978

J. Cui, W. Zhao, K. Guan, P. Rao, Evaluation of Fracture Toughness of Zirconia Ceramics with Heterogeneous Yttrium Distribution Microstructures, Journal of the Australian Ceramic Society, vol. 56, May 2020, pp. 1229-1235.
https://doi.org/10.1007/s41779-020-00474-0

N. Kawai, J. Lin, H. Youmaru, A. Shinya, A. Shinya, Effects of Three Luting Agents and Cyclic Impact Loading on Shear Bond Strengths to Zirconia with Tribochemical Treatment, Journal of Dental Sciences, vol. 7, n. 2, June 2012, pp. 118-124.
https://doi.org/10.1016/j.jds.2012.03.007

S.N. White, V.G. Miklus, E.A. Mclaren, L.A. Lang, Flexural Strength of Layered Zirconia and Porcelain Dental All-Ceramic System, Journal of Prosthetic Dentistry, vol. 94, n. 2, 2005, pp. 125-231.
https://doi.org/10.1016/j.prosdent.2005.05.007

S.M. Popescu, H. Manolea, O. Diaconu, V. Mercut, Zirconia Biocompatibility in Animal Studies - A Systematic Review, Defect and Diffusion Forum, vol. 376, 2017, pp. 12-28.
https://doi.org/10.4028/www.scientific.net/DDF.376.12

H.E. Elkafrawy, N.S. Farghal, Effect of Silanized Zirconia on Some Mechanical Properties of Heat-Polymerized Poly Methylmethacrylate Denture Base Material, Egyptian Dental Journal, vol. 64, n. 6, October 2018, pp. 3583-3592.
https://doi.org/10.21608/edj.2018.79181

Ravindranath, C. Sabarigirinathan, K. Vinayagavel, P. Rupkumar, G. Sriramprabhu, A. Choubey, S. Elavarasan, V. Parimala, J. Gandhimathy, A Comparative Study to Evaluate the Mechanical Properties of Zirconium Oxide Added Polymethyl Methacrylate by Two Different Methods at Two different Concentrations - In Vitro Study, Annals of International Medical and Dental Research, vol. 1, n. 3, 2015, pp. 161-165.

S. Zidan, N. Silikas, A. Alhotan, J. Haider, J. Yates, Investigating the Mechanical Properties of ZrO2-Impregnated PMMA Nanocomposite for Denture-Based Applications, Materials, vol. 12, n. 8, April 2019, 1344.
https://doi.org/10.3390/ma12081344

Z. Sahin, G. Ergun, The Assessment of Some Physical and Mechanical Properties of PMMA Added Different Forms of Nano-ZrO, Journal of Dental and Oral Health, vol. 3, n. 2, 2017, pp. 1-10.

A. Al-Haddad, R.V. Roudsari, J.D. Satterthwaite, Fracture Toughness of Heat Cured Denture Base Acrylic Resin Modified with Chlorhexidine and Fluconazole as Bioactive Compounds, Journal of Dentistry, vol. 42, n. 2, February 2014, pp. 180-184.
https://doi.org/10.1016/j.jdent.2013.11.007

F. Kundie, C.H. Azhari, Z.A. Ahmad, Effect of Nano-and Micro-Alumina Fllers on Some Properties of Poly(methyl methacrylate) Denture Base Composites, Journal of the Serbian Chemical Society, vol. 83, n. 1, February 2018, pp. 75-91.
https://doi.org/10.2298/JSC170118056K

Y. Hu, S. Zhou, L. Wu, Surface Mechanical Properties of Transparent Poly(methyl methacrylate)/Zirconia Nanocomposites Prepared by In Situ Bulk Polymerization, Polymer, vol. 50, n. 15, July 2009, pp. 3609-3616.
https://doi.org/10.1016/j.polymer.2009.03.028

M.U. Jurczyk, K. Jurczyk, K. Niespodziana, A. Miklaszewski, M. Jurczyk, Titanium-SiO2 Nanocomposites and Their Scaffolds for Dental Applications, Materials Characterization, vol. 77, March 2013, pp. 99-108.
https://doi.org/10.1016/j.matchar.2013.01.007

T. Hanawa, Titanium-Tissue Interface Reaction and Its Control With Surface Treatment, Frontiers in Bioengineering and Biotechnology, vol. 7, July 2019, 170.
https://doi.org/10.3389/fbioe.2019.00170

K.D. Jandt, A.M.O. Al-Jasser, K. Al-Ateeq, R.W Vowles, G.C. Allen, Mechanical Properties and Radiopacity of Experimental Glass-Silica-Metal Hybrid Composites, Dental Materials, vol. 18, n. 6, September 2002, pp. 429-35.
https://doi.org/10.1016/S0109-5641(01)00064-1

J. Datta, P. Kosiorek, M. Włoch, Effect of High Loading of Titanium Dioxide Particles on The Morphology, Mechanical and Thermo-Mechanical Properties of the Natural Rubber-Based Composites, Iranian Polymer Journal volume, vol. 25, 2016, pp. 1021-1035.
https://doi.org/10.1007/s13726-016-0488-7

N.H. Felemban, M.I. Ebrahim, The Influence of Adding Modified Zirconium Oxide-Titanium Dioxide Nano-Particles on Mechanical Properties of Orthodontic Adhesive: An In Vitro Study, BMC Oral Health, vol. 17, n. 1, January 2017, 43.
https://doi.org/10.1186/s12903-017-0332-2

J. Musial , R. Krakowiak, D.T. Mlynarczyk, T. Goslinski, B.J. Stanisz, Titanium Dioxide Nanoparticles in Food and Personal Care Products-What Do We Know about Their Safety?. Nanomaterials (Basel), vol. 10, n. 6, June 2020, 1110.
https://doi.org/10.3390/nano10061110

S. Singh, H. Mahalingam, P.K. Singh, Polymer-Supported Titanium Dioxide Photocatalysts for Environmental Remediation: A Review, Applied Catalysis A: General, vol. 462-463, July 2013, pp. 178-195.
https://doi.org/10.1016/j.apcata.2013.04.039

K. Xu, Y. Li, J. Hu, F. Li, J. Tian, B. Xue, P. Zhan, W. Shen, B. Li, Effect of Titanium Dioxide Nanoparticles on Silkworm's Innate Immunity and Resistance to Bacillus bombyseptieus, Science of Advanced Materialsvol, vol. 8, 2016, pp. 1512-1522.
https://doi.org/10.1166/sam.2016.2760

L. Reijnders, The release of TiO2 and SiO2 Nanoparticles from Nanocomposites, Polymer Degradation and Stability, vol. 94, n. 5, May 2009, pp. 873-876.
https://doi.org/10.1016/j.polymdegradstab.2009.02.005

P. Harini, K. Mohamed, T. Padmanabhan, Effect of Titanium Dioxide Nanoparticles on the Flexural Strength of Polymethylmethacrylate: An In Vitro Study, Indian journal of dental research: official publication of Indian Society for Dental Research, vol. 25, n. 4, 2014, pp. 459-463.
https://doi.org/10.4103/0970-9290.142531

L. Shamseer, D. Moher, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, P. Shekelle, L. A Stewart, Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: Elaboration and Explanation, BMJ, January 2015;349:g7647
https://doi.org/10.1136/bmj.g7647

E. Tandra, E. Wahyuningtyas, E. Sugiatno, The effect of Nanoparticles TiO2 on the Flexural Strength of Acrylic Resin Denture Plate, Padjadjaran Journal of Dentistry, vol 30, n. 1, 2018, pp. 35-40.
https://doi.org/10.24198/pjd.vol30no1.16110

M. Karci, N. Demir, S. Yazman, Evaluation of Flexural Strength of Different Denture Base Materials Reinforced with Different Nanoparticles, Journal of Prosthodontics, vol. 28, n. 5, June 2019, pp. 572-579.
https://doi.org/10.1111/jopr.12974

H. Liu, L.C. Brinson, A Hybrid Numerical-Analytical Method for Modeling the Viscoelastic Properties of Polymer Nanocomposites, Journal of Applied Mechanics, vol. 73, n. 5, September 2006, pp. 758-768
https://doi.org/10.1115/1.2204961

H. Liu, L.C. Brinson, Reinforcing Efficiency of Nanoparticles: A Simple Comparison for Polymer Nanocomposites, Composites Science and Technology, vol. 68, n. 6, May 2008, pp. 1502-1512
https://doi.org/10.1016/j.compscitech.2007.10.033

N.N. Hafizah, M.H. Mamat, M.H. Abidin, C.M.S. Said, M. Rusop, Bonding and Mechanical Properties of PMMA/TiO2 Nanocomposites, Advanced Materials Research, vol. 832, 2013, pp. 700-705.
https://doi.org/10.4028/www.scientific.net/AMR.832.700

L. Unnikrishnan, S. Mohanty, S.K.Nayak, A. Ali, Preparation and Characterization of Poly(Methyl Methacrylate)-Clay Nanocomposites via Melt Intercalation: Effect of Organoclay on Thermal, Mechanical and Flammability Properties, Materials Science and Engineering: A, vol. 528, n. 12, May 2011, pp. 3943-3951.
https://doi.org/10.1016/j.msea.2011.01.071

A. Sodagar, A. Bahador, S. Khalil, A.S. Shahroudi, M.Z. Kassaee, The effect of TiO2 and SiO2 Nanoparticles on Flexural Strength of Poly (Methyl Methacrylate) Acrylic Resins, Journal of Prosthodontic Research, vol. 57, n. 1, 2013, pp. 15-19
https://doi.org/10.1016/j.jpor.2012.05.001

M. K. Bangera, R. Kotian, Ravishankar N, Effect of Titanium Dioxide Nanoparticle Reinforcement on Flexural Strength of Denture Base Resin: A Systematic Review and Meta-Analysis, Japanese Dental Science Review, vol. 56, n. 1, November 2020, pp. 68-76.
https://doi.org/10.1016/j.jdsr.2020.01.001

S. Shirkavand, E. Moslehifard, Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins, Journal of Dental Research, Dental Clinics, Dental Prospects, vol. 8, n. 4, 2014, pp. 197-203

E. Moslehifard, M.R. Anaraki, S. Shirkavand, Effect of Adding TiO2 Nanoparticles on The SEM Morphology and Mechanical Properties of Conventional Heat-Cured Acrylic Resin, Journal of Dental Research, Dental Clinics, Dental Prospects, vol. 13, n. 3, 2019, pp. 234-240.
https://doi.org/10.15171/joddd.2019.036

S. Mosalman, S. Rashahmadi, R. Hasanzadeh, The Effect of TiO2 Nanoparticles on Mechanical Properties of Poly Methyl Methacrylate Nanocomposites (RESEARCH NOTE), International Journal of Engineering, Transactions B: Applications, vol. 30, n. 5, May 2017, pp. 807-813.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize