Open Access Open Access  Restricted Access Subscription or Fee Access

Thermal Performance Evaluation of Binary Fatty Acid/Expanded Graphite Composite as a Thermal Storage Medium for Solar Air Heater


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v14i10.19724

Abstract


The low thermal conductivity of the organic phase change material (PCM) integrated with the solar air heating system (SAHs) has a critical effect on the thermal performance of the system. The melting temperature (Tm), the latent heat (ΔH), the thermal-chemical stability, and the thermal conductivity are the main characteristics of solar applications' PCM. This work aims to evaluate the thermal performance of binary fatty acids composite consisting of Palmitic Acid (PA)-Lauric Acid (LA) mixture as a potential PCM for low-temperature applications before and after its thermal conductivity has been enhanced by adding Expanded Graphite (EG). The PA-LA mixture and the stable-form of PA-LA/EG composite PCM with Tm of (36.5°C, and 35.3°C) and ΔH of (170.33kJ/kg, and 166.24kJ/kg), respectively, have been integrated with a simple solar air heater and have been tested by an indoor fabricated solar simulator. According to theoretical analysis and experimental results, the thermal efficiency of the SAHs integrated with PA-LA/EG composite PCM has reached a maximum of 65%. Furthermore, after the solar simulator has been switched off, the outlet air temperature of the SAHs has remained higher than the inlet one by 7 °C for 4h at a mass flow rate of 0.02kg/s.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Thermal Conductivity; Thermal-Chemical Stability; Mass Flow Rate; Thermal Storage Efficiency; Time Discharging SAHs

Full Text:

PDF


References


Y. Yanping, Z. Nan, T. Wenquan, C. Xiaoling, H. Yaling, Fatty acids as phase change materials: A review. Renewable and Sustainable Energy Reviews, vol. 29, n. C, pp. 482-498, 2014.
https://doi.org/10.1016/j.rser.2013.08.107

Prada, G., Valencia, G., Duarte Forero, J., Characterization of Emissions in a Diesel Engine Using Biodiesel Blends Produced from Agro-Industrial Residues of Elaeis Guineensis, (2020) International Journal on Energy Conversion (IRECON), 8 (2), pp. 45-52.
https://doi.org/10.15866/irecon.v8i2.18583

S. Kahwaji, M. A. White, Prediction of the properties of eutectic fatty acid phase change materials. Thermochemical Acta, vol. 660, pp. 94–100, 2018.
https://doi.org/10.1016/j.tca.2017.12.024

D. Zhou, Y. Zhou, Y. Liu, X. Luo, J. Yuan, Preparation and Performance of Capric-Myristic Acid Binary Eutectic Mixtures for Latent Heat Thermal Energy Storages. Journal of Nanomaterials, vol. 2019, pp. 1–9, 2019.
https://doi.org/10.1155/2019/2094767

H. Zhang, X. Gao, C. Chen, T. Xu, Y. Fang, Z. Zhang, A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage. Composites Part A: Applied Science and Manufacturing, vol. 87, pp. 138–145, 2016.
https://doi.org/10.1016/j.compositesa.2016.04.024

N. Zhang, Y. Yuan, T. Li, X. Cao, X. Yang, Study on thermal property of lauric–palmitic–stearic acid/vermiculite composite as form-stable phase change material for energy storage, Advances in Mechanical Engineering, vol. 7, no. 9, 2015.
https://doi.org/10.1177/1687814015605023

H. Wei, X. Xie, X. Li, X. Lin, Preparation and characterization of capric-myristic-stearic acid eutectic mixture/ modified expanded vermiculite composite as a form-stable phase change material, Applied Energy, vol. 178, pp. 616-623, 2016.
https://doi.org/10.1016/j.apenergy.2016.06.109

H. Ke, Z. Pang, B. Peng, J. Wang, Y. Cai, F. Huang, Q. Wei, Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver, Journal of Thermal Analysis and Calorimetry, vol. 123, pp. 1293-1307, 2016.
https://doi.org/10.1007/s10973-015-5025-y

Haddada, J., Tarakka, R., Rusman, M., Mochtar, A., Performance Investigation of Solar Water Heating System with V-Shaped Absorber Plate Integrated PCM Storage, (2020) International Journal on Engineering Applications (IREA), 8 (5), pp. 188-193.
https://doi.org/10.15866/irea.v8i5.18231

Y. B. Tao, Y. L. He, A review of phase change material and performance enhancement method for latent heat storage system., Renewable and Sustainable Energy Reviews, vol. 93, pp. 245–259, 2018.
https://doi.org/10.1016/j.rser.2018.05.028

S. Wu, T. X. Li, T. Yan, Y. J. Dai, R. Z. Wang, High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage, International Journal of Heat and Mass Transfer, vol. 102, p. 733–744, 2016.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.066

Z. A. Qureshi, H. M. Ali, S. Khushnood, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review, International Journal of Heat and Mass Transfer, vol. 127, pp. 838–856., 2018.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.049

Y. He, X. Zhang, Y. Zhang, Q. Song, X. Liao, Utilization of lauric acid-myristic acid/expanded graphite phase change materials to improve thermal properties of cement mortar. Energy and Buildings, vol. 133, pp. 547–558, 2016.
https://doi.org/10.1016/j.enbuild.2016.10.016

D. Zhou, Y. Zhou, J. Yuan, Y. Liu, Palmitic Acid-Stearic Acid/Expanded Graphite as Form-Stable Composite Phase-Change Material for Latent Heat Thermal Energy Storage. Journal of Nanomaterials, vol. 2020, pp. 1–9, 2020.
https://doi.org/10.1155/2020/1648080

D. Zhou, J. Yuan, Y. Zhou, Y. Liu, Preparation and Properties of Capric–Myristic Acid/Expanded Graphite Composite Phase Change Materials for Latent Heat Thermal Energy Storage. Energies, vol. 13(10), pp. 2462, 2020.
https://doi.org/10.3390/en13102462

Y. Song, N. Zhang, Y. Yuan, L. Yang, X. Cao, Prediction of the solid effective thermal conductivity of fatty acid/carbon material composite phase change materials based on fractal theory, Energy, vol. 170, pp. 752-762, 2019.
https://doi.org/10.1016/j.energy.2018.12.162

N. Zhang, Y. Yuan, X. Wang, X. Cao, X. Yang, S. Hu, Preparation and characterization of lauric–myristic–palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy, Chemical Engineering Journal, vol. 231, pp. 214-219, 2013.
https://doi.org/10.1016/j.cej.2013.07.008

X. Yang, Y. Yuan, N. Zhang, X. Cao, C. Liu, Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Solar Energy, vol. 99, pp.259-266, 2014.
https://doi.org/10.1016/j.solener.2013.11.021

X. Huang, Y. Cui, B. Zhang, G. Yin, G. Feng, Preparation and properties of capric-lauric-palmitic acid eutectic mixtures/expanded graphite composite as phase change materials for energy storage, Advanced Materials Research, vol. 1028, pp. 40-45., 2014.
https://doi.org/10.4028/www.scientific.net/amr.1028.40

C. R. Chen, A. Sharma, S. K. Tyagi, D. Buddhi, Numerical heat transfer studies of PCMs used in a box-type solar cooker, Renewable Energy, vol. 33, n. 5, pp. 1121–1129, 2008.
https://doi.org/10.1016/j.renene.2007.06.014

K. Kant, A. Shukla, A. Sharma, A. Kumar, A. Jain, Thermal energy storage based solar drying systems: A review, Innovative Food Science & Emerging Technologies, vol. 34, pp. 86–99., 2016.
https://doi.org/10.1016/j.ifset.2016.01.007

H. El Qarnia, Numerical analysis of a coupled solar collector latent heat storage unit using various phase change materials for heating the water, Energy Conversion and Management, vol. 50, n. 2, pp. 247–254, 2009.
https://doi.org/10.1016/j.enconman.2008.09.038

A.F. Al-Hamadani, S. K. Shukla, Water distillation using solar energy system with lauric acid as storage medium, International of Journal Energy Engineering, vol. 1, n. 1, pp. 1–8, 2011.
https://doi.org/10.5923/j.ijee.20110101.01

A. Hasan, S. J. McCormack, M. J. Huang, B. Norton, Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics, Solar Energy, vol. 84, n. 9, pp. 1601–1612, 2010.
https://doi.org/10.1016/j.solener.2010.06.010

A. Hasan, S. J. McCormack, M. J. Huang, J. Sarwar, B. Norton, Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates, Solar Energy, vol. 115, pp. 264–276, 2015.
https://doi.org/10.1016/j.solener.2015.02.003

M. A. Wazed, Y. Nukman, M. T. Islam M. T, Design fabrication of a cost-effective solar air heater for Bangladesh, Applied Energy, vol. 87, n. 10, pp. 3030-3036, 2010.
https://doi.org/10.1016/j.apenergy.2010.02.014

S. M. Salih, J. M. Jalil, S. E. Najim, Double-Pass Solar air Heater (DP-SAH) utilizing Latent Thermal Energy Storage (LTES), 2ed international IOP Conf. Materials Science and Engineering, Baghdad, vol.518, 2019.
https://doi.org/10.1088/1757-899x/518/3/032038

H. E. S. Fath, Thermal performance of a simple design solar air heater with built-in thermal energy storage system, Renewable Energy, vol. 6, n. 8, pp. 1033-1039, 1995.
https://doi.org/10.1016/0960-1481(94)00085-6

M. Alkilani, K. Sopian, S. Mat, M. Alghoul, Output air temperature prediction in a solar air heater integrated with phase change material, European Journal of Scientific Research, vol. 27, n. 3, pp. 334-341., 2009.

M. Alkilani, K. Sopian, S. Mat, Fabrication and experimental investigation of PCM capsules integrated in solar air heater, American Journal of Environmental Sciences, vol. 7, n. 6, pp. 542-546, 2011.
https://doi.org/10.3844/ajessp.2011.542.546

J. Z. Maitham, H. A. Mohammed, Improvement in Heat Transfer Inside a phase change Energy, International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, vol. 18, n. 5, 2018.

A. Solomon, Some of approximations of use in predicting the behaviour of a PCM cylinder array, Letters in Heat and Mass Transfer, vol. 8, n. 3, pp. 237-246, 1981.
https://doi.org/10.1016/0094-4548(81)90018-7

B. Cárdenas, N. León, High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and Sustainable Energy Reviews, vol. 27, pp.724–737, 2013.
https://doi.org/10.1016/j.rser.2013.07.028

W. H. McAdams, Heat Transmission (3rd edition., McGraw-Hill book company, 1954).

S. Chanda, D. Sing, S. Majumder, S. Nag, S. Karmakar, A. K. Upadhyay, A. K. Hazarika, S. Sabhapondit, S. Tasrin, NIR spectroscopy with grey wolf optimization algorithm for prediction of polyphenol content in inward tea leaves, IEEE Calcutta Conf. (CALCON), Kolkata, 2017, pp. 392-396.
https://doi.org/10.1109/calcon.2017.8280762

M. Luo, K. Wu, Heart rate prediction model based on neural network, 2nd International IOP Conf. Materials Science and Engineering, Shanghai, vol.715, 2020.

K. Tuncbilek, A. Sari, S. Tarhan, G. Ergunes, K. Kaygusuz, Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications, Energy, vol. 30, n. 5, p. 677–692., 2005.
https://doi.org/10.1016/j.energy.2004.05.017

A. Sarı, Eutectic mixtures of some fatty acids for low temperature solar heating applications: Thermal properties and thermal reliability, Applied Thermal Engineering, vol. 25, n. 14-15, pp. 2100–2107., 2005.
https://doi.org/10.1016/j.applthermaleng.2005.01.010


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize