Open Access Open Access  Restricted Access Subscription or Fee Access

Mathematical Simulation of Forest Fuel Element at the Crown Forest Fire Impact Taking Into Account Multiphase Reactive Media Mechanics Fundamentals


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v14i8.19655

Abstract


In order to predict crown forest fires, it is necessary to study the behavior of various forest fuels in a high-temperature environment. In this work, the main regularities of pyrolysis in a foliage sample of angiosperms (birch) have been studied under conditions typical for the crown forest fire. Mathematically, the pyrolysis process in the forest fuel element is described by the system of non-stationary non-linear heat conduction equations with corresponding initial and boundary conditions. The problem is solved within the framework of the two-dimensional formulation by the finite difference method. The locally one-dimensional method has been used to solve two-dimensional equations of the heat conduction. In order to solve nonlinear effects caused by the pyrolysis of forest fuel material, the simple iteration method has been used. At the interface between the subareas, the boundary conditions of the fourth kind are used. The software implementation of the mathematical model is made in the high-level programming language Delphi in the RAD Studio software. The main regularities in changes of the temperature field and the phase composition of the sample under high-temperature exposure from the forest fire are presented. The induction period of the thermal decomposition of dry organic matter in the sample has been determined. Recommendations are made about the features of accounting for the pyrolysis process when predicting forest fire danger. The research results can be used in the development and the improvement of systems for predicting forest fire danger and environmental consequences of the forest fires.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Forest Fuel; Heat and Mass Transfer; Pyrolysis; Two-Dimensional Statement; Birch Leaf; Mathematical Modeling; Induction Period; Multiphase Reactive Media Mechanics

Full Text:

PDF


References


T. S. Prass, S. R. C. Lopes, J. G. Dórea, R. C. Marques, and K. G. Brandão, Amazon Forest Fires Between 2001 and 2006 and Birth Weight in Porto Velho, Bulletin of Environmental Contamination and Toxicology, Vol. 89, n. 1, pp. 1–7, 2012.
https://doi.org/10.1007/s00128-012-0621-z

D. M. Molina-Terrén et al., Analysis of forest fire fatalities in Southern Europe: Spain, Portugal, Greece and Sardinia (Italy), International Journal of Wildland Fire, Vol. 28, n. 2, p. 85-98, 2019.
https://doi.org/10.1071/wf18004

F. C. Eugenio et al., Causal, temporal and spatial statistics of wildfires in areas of planted forests in Brazil, Agricultural and Forest Meteorology, Vol. 266–267, pp. 157–172, 2019.
https://doi.org/10.1016/j.agrformet.2018.12.014

K. Kirillina, E. G. Shvetsov, V. V. Protopopova, L. Thiesmeyer, W. Yan, Consideration of anthropogenic factors in boreal forest fire regime changes during rapid socio-economic development: case study of forestry districts with increasing burnt area in the Sakha Republic, Russia, Environmental Research Letters, Vol. 15, n. 3, p. 035009, 2020.
https://doi.org/10.1088/1748-9326/ab6c6e

A. V. Ukraintsev, A. M. Plyusnin, M. K. Chernyavskii, Effect of Forest Fires on the State of Rivers in Zaigraevskii Raion, the Republic of Buryatia, Water Resources, Vol. 46, n. 1, pp. 11–18, 2019.
https://doi.org/10.1134/s0097807818050226

B. J. Stocks, D. L. Martell, Forest fire management expenditures in Canada: 1970–2013, The Forestry Chronicle, Vol. 92, n. 3, pp. 298–306, 2016.
https://doi.org/10.5558/tfc2016-056

C. Barhoumi et al., Gradually increasing forest fire activity during the Holocene in the northern Ural region (Komi Republic, Russia), The Holocene, Vol. 29, n. 12, pp. 1906–1920, 2019.
https://doi.org/10.1177/0959683619865593

J. T. Abatzoglou, and A. P. Williams, Impact of anthropogenic climate change on wildfire across western US forests, Proceedings of the National Academy of Sciencesof the United States of America, vol. 113, no. 42, pp. 11770–11775, 2016.
https://doi.org/10.1073/pnas.1607171113

A. L. Westerling, Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring, Philosophical Transactions of the Royal Society B, vol. 371, no. 1696, p. 20150178, 2016.
https://doi.org/10.1098/rstb.2015.0178

S. Read, C. Howell, National ‘state of the forests’ reporting in Australia, Australian Forestry, Vol. 82, n. 2, pp. 53–55, 2019.
https://doi.org/10.1080/00049158.2019.1601827

N. N. Brushlinsky, M. Ahrens, S.V. Sokolov, P. Wagner, World fire statistics, International association of fire and rescue services, n.24, 68p, 2019.

S. H. Doerr, C. Santín, Global trends in wildfire and its impacts: perceptions versus realities in a changing world, Philosophical Transactions of the Royal Society B vol. 371, n. 1696, p. 20150345, 2016.
https://doi.org/10.1098/rstb.2015.0345

M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy, Vol. 31, n. 4, pp. 222–242, 2007.
https://doi.org/10.1016/j.biombioe.2006.02.006

F.-X. Collard, J. Blin, A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renewable and Sustainable Energy Reviews, vol. 38, pp. 594–608, 2014.
https://doi.org/10.1016/j.rser.2014.06.013

M. Van de Velden, J. Baeyens, A. Brems, B. Janssens, R. Dewil, Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction, Renewable Energy, Vol. 35, n. 1, pp. 232–242, 2010.
https://doi.org/10.1016/j.renene.2009.04.019

O. A. Pasko, V. F. Kovyavin, N. A. Lebedeva, The Influence of Fires on Forest Ecosystems, In N.V. Baranovskiy (Ed.) Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks, (Hershey, PA: IGI Global, 2020, 345-366).
https://doi.org/10.4018/978-1-7998-1867-0.ch015

M. Drapalyuk, D. Stupnikov, D. Druchinin, E. Pozdnyakov, Forest fires: methods and means for their suppression, IOP Conf. Ser.: Earth Environ. Sci., vol. 226, p. 012061, 2019.
https://doi.org/10.1088/1755-1315/226/1/012061

FAO (2001). International handbook on forest fire protection. Technical guide for the countries of the Mediterranean basin, 163p.

Satendra, A. D. Kaushik, Forest fire disaster management (1st edition, New Delhi: National Institute of Disaster Management, Ministry of Home Affairs, Govt. of India, 2014).

G. Xanthopoulos, M. Athanasiou, Crown Fire, In S. L. Manzello, (Ed.) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires (Springer Nature Switzerland AG, 2020, 1–15).
https://doi.org/10.1007/978-3-319-51727-8_13-1

P. A. Werth et al., Synthesis of knowledge of extreme fire behavior: volume I for fire managers, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, PNW-GTR-854, 2011. doi: 10.2737/PNW-GTR-854.

C. E. Van Wagner, Conditions for the start and spread of crown fire, Canadian Journal of Forest Research, Vol. 7, n. 1, 1977, pp. 23-34.
https://doi.org/10.1139/x77-004


J. H. Scott, Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior. (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2001).
https://doi.org/10.2737/rmrs-rp-29

M. Alexander, M. Cruz, N. Vaillant, and D. Peterson, Crown fire behavior characteristics and prediction in conifer forests: a state-of-knowledge synthesis, Joint Fire Science Program Research Project Reports, 2013.

J. Reardon, Surface Fire, In S. L. Manzello, (Ed.) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires (Springer Nature Switzerland AG, 2020, 1–6).
https://doi.org/10.1007/978-3-319-52090-2

B. W. Butler et al., Measurements of radiant emissive power and temperatures in crown fires, Canadian Journal of Forest Research., Vol. 34, n. 8, pp. 1577–1587, 2004.
https://doi.org/10.1139/x04-060

R.W. Wein, Fire behavior and ecological effects in organic terrain, In R.W. Wein and D.A. MacLean (Ed.) The Role of Fire In Northern Circumpolar Ecosystems, (John Wiley and Sons, New York, 1981, 81–95).

V.G. Korsakov, M.M. Sychev, S.V. Myakin, Physical chemistry of condensed systems and highly organized substances (SPb: SPbGTI (TU), 2013). (на русском)

V.N. Viliunov, Theory of ignition of condensed substances, (Nauka, Novosibirsk, 1984). (на русском)

S. Liodakis, D. Bakirtzis, A. Dimitrakopoulos, Ignition characteristics of forest species in relation to thermal analysis data, Thermochimica Acta, Vol. 390, n. 1–2, pp. 83–91, 2002.
https://doi.org/10.1016/s0040-6031(02)00077-1

P. Reszka et al., Ignition delay times of live and dead pinus radiata needles, Fire Safety Journal, Vol. 112, p. 102948, 2020
https://doi.org/10.1016/j.firesaf.2020.102948

N. Hernández, A. Fuentes, J. L. Consalvi, J. C. Elicer-Cortés, Spontaneous ignition of wildland fuel by idealized firebrands, Experimental Thermal and Fluid Science, Vol. 95, pp. 88–95, 2018.
https://doi.org/10.1016/j.expthermflusci.2018.01.037

A. M. Grishin, V. P. Zima, V. T. Kuznetsov, A. I. Skorik, Ignition of Combustible Forest Materials by a Radiant Energy Flux, Combustion, Explosion, and Shock Waves, Vol. 38, т. 1, pp. 24-29, 2002.
https://doi.org/10.1023/a:1014097631884

A. C. Fernandez-Pello et al., Spot Fire Ignition of Natural Fuel Beds by Hot Metal Particles, Embers, and Sparks, Combustion Science and Technology, Vol. 187, n. 1–2, pp. 269–295, 2015.
https://doi.org/10.1080/00102202.2014.973953

J. L. Urban, C. D. Zak, C. Fernandez-Pello, Spot Fire Ignition of Natural Fuels by Hot Aluminum Particles, Fire Technology, Vol. 54, n. 3, pp. 797–808, 2018.
https://doi.org/10.1007/s10694-018-0712-4

S. Wang, X. Huang, H. Chen, N. Liu, Interaction between flaming and smouldering in hot-particle ignition of forest fuels and effects of moisture and wind, International Journal of Wildland Fire, Vol. 26, n. 1, pp. 71–81, 2017.
https://doi.org/10.1071/wf16096

J. L. Urban, Spot Ignition of Natural Fuels by Hot Metal Particles, Ph.D. dissertation, University of California, Berkeley, 2017.

N. V. Baranovskiy, A. V. Zakharevich, Experimental investigation of processes of typical forest fuel ignition by a high-temperature steel particle, Heat Transfer Research, Vol. 47, n. 7, pp. 681–689, 2016.
https://doi.org/10.1615/heattransres.2016010609

R. M. Hadden, S. Scott, C. Lautenberger, A. C. Fernandez-Pello, Ignition of Combustible Fuel Beds by Hot Particles: An Experimental and Theoretical Study, Fire Technology, Vol. 47, n. 2, pp. 341–355, 2011.
https://doi.org/10.1007/s10694-010-0181-x

E. Altamirova, V. A. Perminov, Mathematical Modeling of Forest Canopy Ignition by Thermal Radiation from a Hydrocarbon Explosion, Combustion, Explosion, and Shock Waves, Vol. 55, n. 5, pp. 574–579, 2019.
https://doi.org/10.1134/s0010508219050083

J. L. Urban, C. D. Zak, J. Song, C. Fernandez-Pello, Smoldering spot ignition of natural fuels by a hot metal particle, Proceedings of the Combustion Institute, Vol. 36, n. 2, pp. 3211–3218, 2017.
https://doi.org/10.1016/j.proci.2016.09.014

G. V. Kuznetsov, V. V. Salomatov, S. V. Syrodoy, Ignition of Particles of Wet Woody Biomass under Convective Diffusion of Water Vapor in the Near-Wall Region, Combustion, Explosion, and Shock Waves, Vol. 54, n. 3, pp. 325–336, 2018.
https://doi.org/10.1134/s0010508218030097

J. J. Hollis, W. L. McCaw, M. G. Cruz, The effect of woody fuel characteristics on fuel ignition and consumption: a case study from a eucalypt forest in south-west Western Australia, International Journal of Wildland Fire, Vol. 27, n. 5, pp. 363–375, 2018.
https://doi.org/10.1071/wf17174

N. V. Baranovskiy, A. S. Naumkin, Mathematical Simulation of Heat Transfer in Heterogenous Forest Fuel Layer Influenced by Heated Up to High Temperatures Steel Particle, MATEC Web of Conferences, Vol. 19, p. 01036, 2014.
https://doi.org/10.1051/matecconf/20141901036

O. V. Matvienko, D. P. Kasymov, A. I. Filkov, O. I. Daneyko, D. A. Gorbatov, Simulation of fuel bed ignition by wildland firebrands, International Journal of Wildland Fire, Vol. 27, n. 8, pp. 550–561, 2018
https://doi.org/10.1071/wf17083

A. M. Grishin et al., Ignition of a layer of combustible forest materials, Combustion, Explosion, and Shock Waves, Vol. 34, n. 6, pp. 613–620, 1998.
https://doi.org/10.1007/bf02672692

B. Shotorban , B.L. Yashwanth, S. Mahalingam, D.J. Haring, An investigation of pyrolysis and ignition of moist leaf-like fuel subject to convective heating, Combustion and Flame, Vol. 190, pp. 25–35, 2018.
https://doi.org/10.1016/j.combustflame.2017.11.008

B.L. Yashwanth, B. Shotorban, S. Mahalingam , C.W. Lautenberger , D.R. Weise, A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element, Combustion and Flame, Vol. 163, pp. 301–316, 2016.
https://doi.org/10.1016/j.combustflame.2015.10.006

N.V. Baranovskiy, A. N. Demikhova, Mathematical Modeling of Heat Transfer in an Element of Combustible Plant Material When Exposed to Radiation from a Forest Fire, Safety, Vol. 5, n. 3, p. 56, 2019.
https://doi.org/10.3390/safety5030056

A. M. Grishin, V. A. Perminov, Mathematical modeling of the ignition of tree crowns, Combustion, Explosion, and Shock Waves, Vol. 34, n. 4, pp. 378–386, 1998.
https://doi.org/10.1007/bf02675602

Samreen Hameed, Abhishek Sharma,Vishnu Pareek, Hongwei Wu, YunYu A review on biomass pyrolysis models: Kinetic, network and mechanistic models, Biomass and Bioenergy Volume 123, April 2019, Pages 104-122.
https://doi.org/10.1016/j.biombioe.2019.02.008

P. R. Solomon, D. G. Hamblen, R. M. Carangelo, M. A. Serio, G. V. Deshpande General model of coal devolatilization, Energy Fuels, 1988,2,4,405-422.
https://doi.org/10.1021/ef00010a006

Stephen Niksa Predicting the rapid devolatilization of diverse forms of biomass with bio-flashchain, Proceedings of the Combustion Institute Volume 28, Issue 2, 2000, Pages 2727-2733.
https://doi.org/10.1016/s0082-0784(00)80693-1

G.Vizzini 1, A.Bardi 2, E. Biagini 1 , M. Falcitelli 1, and L. Tognotti Prediction Of Rapid Biomass Devolatilization Yields With An Upgraded Version Of The BioCPD Model, Combustion Institute Italian section, 2008.

N. Prakash, T. Karunanithi, Kinetic modeling in biomass pyrolysis - a review, Appl. Sci. Res. 4 (2008) 1627–1636.

Edward J. KansaHenry E. PerleeRobert F. Chaiken Mathematical model of wood pyrolysis including internal forced convection, Combustion and Flame Volume 29, 1977, Pages 311-324.
https://doi.org/10.1016/0010-2180(77)90121-3

N.A. Borodina, V.I. Nekrasov Trees and shrubs of the USSR (Publishing house "Mysl" Moscow, 1966). (In Russian).

V.F. Abaimov, Dendrology (Moscow: Academy, 2009). (In Russian).

A. A. Samarskii. The theory of difference schemes (New York – Basel. Marcel Dekker, Inc, 2001).

M. Adámek, Z. Jankovská, V. Hadincová, E. Kula, J. Wild Drivers of forest fire occurrence in the cultural landscape of Central Europe. Landscape Ecology, 2018, 33(11), 2031-2045.
https://doi.org/10.1007/s10980-018-0712-2

D. M. J. S.Bowman, A. Moreira-Muñoz, C.A. Kolden, R.O. Chávez, A.A. Muñoz, F. Salinas, A. González-Reyes, R. Rocco, F. de la Barrera, G.J. Williamson, N. Borchers, L.A. Cifuentes, J.T. Abatzoglou, F.H. Johnston. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio, 2019. 48(4), 350-362.
https://doi.org/10.1007/s13280-018-1084-1

A.M. Grishin, A.I. Filkov. A deterministic-probabilistic system for predicting forest fire hazard. Fire Safety Journal, 2011. 46(1-2), 56-62.
https://doi.org/10.1016/j.firesaf.2010.09.002

B.M. Wotton Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications, Environmental and Ecological Statistics. 2009. Vol. 16. pp. 107-131.
https://doi.org/10.1007/s10651-007-0084-2

Baranovskiy, N., Forest Fire Danger Assessment Using SPMD-Model of Computation for Massive Parallel System, (2017) International Review on Modelling and Simulations (IREMOS), 10 (3), pp. 193-201.
https://doi.org/10.15866/iremos.v10i3.10570

doi:https://doi.org/10.15866/iremos.v10i3.10570

N.V. Baranovskiy, Mathematical Simulation of Anthropogenic Load on Forested Territories for Point Source. In N. Baranovskiy (Ed.), Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks. 2020. (pp. 64-88). Hershey, PA: IGI Global.
https://doi.org/10.4018/978-1-7998-1867-0.ch003

RAD Studio. (2020) (Accessed 03 July 2020).
Available: https://www.embarcadero.com/ru/products/rad-studio

Matlab. (2020). (Accessed 03 July 2020).
Available: https://www.mathworks.com/products/matlab.html

Microsoft Visual Studio. (2020). (Accessed 03 July 2020).
Available: https://visualstudio.microsoft.com

D.X. Viegas, G. Bovio, A. Ferreira, A., A. Nosenzo, B. Sol. Comparative study of various methods of fire danger evaluation in Southern Europe. International Journal of Wildland Fire, 2000. Vol. 10, pp. 235-246.
https://doi.org/10.1071/wf00015

WFAS Wildland Fire Assessment System. Official site. (Accessed 03 July 2020).
Access: http://www.wfas.net

A.S. Podolskaya, D.V. Ershov, P.P. Shulyak. Application of the method for assessing the probability of occurrence of forest fires in ISDM-Rosleskhoz. Modern problems of remote sensing of the Earth from space, 2011. Vol. 8, pp. 118 - 126. (In Russian).

B.S. Lee, M.E. Alexander, B.C. Hawkes, T.J. Lynham, B.J. Stocks, P. Englefield. Information systems in support of wildland fire management decision-making in Canada. Computers and Electronics in Agriculture, 2002. Vol. 37, pp. 185-198.
https://doi.org/10.1016/s0168-1699(02)00120-5


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize