Open Access Open Access  Restricted Access Subscription or Fee Access

A Review on Microwave-Assisted Co-Pyrolysis of Biomass-Polymers


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v14i5.19002

Abstract


Microwave technology has been extensively used as a heat source in co-pyrolysis processes. It provides several advantages such as fast and selective heating process, efficient use of energy, ability to increase quantity and quality of products, and controlling the development of hazardous produces and emissions so that it is considered environmentally-friendly. The use of biomass and polymers mixtures in microwave co-pyrolysis is expected to increase the number of products in the liquid phase because of the synergistic effect between gas products from biomass pyrolysis and hydrogen (as polymer pyrolysis products) which will encourage further formation of co-pyrolysis products. This review aims to increase the understanding of microwave used in the process of biomass and polymer co-pyrolysis. It also summarizes the direction of future researches to make the microwave energy more properly in the process of polymers and biomass mixture co-pyrolysis. The process optimization is to obtain liquid phase co-pyrolysis products especially bio-oil generated from pyrolysis that can be processed using the thermal cracking method in order to obtain bio-diesel products.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Environmentally Friendly; Liquid Product; Microwave Technology; Polymer; Pyrolysis

Full Text:

PDF


References


A. Demirbas, Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues, J. Anal. Appl. Pyrolysis, vol. 72, no. 2, pp. 243–248, Nov. 2004.
https://doi.org/10.1016/j.jaap.2004.07.003

F. Motasemi and M. T. Afzal, A review on the microwave-assisted pyrolysis technique, Renew. Sustain. Energy Rev., vol. 28, pp. 317–330, 2013.

S. Jamilatun, Budhijanto, Rochmadi, A. Yuliestyan, H. Hadiyanto, and A. Budiman, Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues, Int. J. Renew. Energy Dev., vol. 8, no. 2, pp. 133–140, 2019.
https://doi.org/10.14710/ijred.8.2.133-140

Y. S. Pradana, W. Masruri, F. A. Azmi, E. A. Suyono, H. Sudibyo, and Rochmadi, Extractive-transesterification of Microalgae Arthrospira sp. Using Methanol-Hexane Mixture as solvent, Int. J. Renew. Energy Res., vol. 8, no. 3, pp. 1499–1507, 2018.

BP Statistical, BP Statistical Review of World Energy, 2015.
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html

IEA-International Energy Agency.
https://www.iea.org/ (accessed Dec. 18, 2019.)

National Energy Council, Indonesia Energy Outlook 2015. Secretariat General of the National Energy Board, 2015.

IEEJ, IEEJ Outlook 2018 Prospects and challenges until 2050, 2018. [Online]. Available:
https://eneken.ieej.or.jp/data/7748.pdf

I. B. Fridleifsson, Status of geothermal energy amongst the world’s energy sources, Geothermics, vol. 32, no. 4, pp. 379–388, 2003.
https://doi.org/10.1016/j.geothermics.2003.07.004

Education at a Glance 2019. OECD, 2019.

D. Hoornweg, P. Bhada-Tata, and C. Kennedy, Waste production must peak this century, Nature, vol. 502, no. 7473, pp. 615–617, 2013.
https://doi.org/10.1038/502615a

European-Plastics, An analysis of European plastics production, demand and waste data, 2015.

D. Rachmadena, M. Faizal, and M. Said, Conversion of polypropylene plastic waste into liquid fuel with catalytic cracking process using Al2O3 as catalyst, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 3, pp. 694–700, 2018.
https://doi.org/10.18517/ijaseit.8.3.2586

L. C. M. Lebreton, J. Van Der Zwet, J. W. Damsteeg, B. Slat, A. Andrady, and J. Reisser, River plastic emissions to the world’s oceans, Nat. Commun., vol. 8, Jun. 2017.
https://doi.org/10.1038/ncomms15611

ETRA-EU-The European Tyre Recycling Association.

https://www.etra-eu.org/ (accessed Dec. 18, 2019.)

K. E. Day, K. E. Holtze, J. L. Metcalfe-Smith, C. T. Bishop, and B. J. Dutka, Toxicity of leachate from automobile tires to aquatic biota, Chemosphere, vol. 27, no. 4, pp. 665–675, 1993.
https://doi.org/10.1016/0045-6535(93)90100-j

How we work-OECD. https://www.oecd.org/about/how-we-work/ (accessed Dec. 18, 2019)

United Nations, The state of plastics: World Environment Day Outlook 2018, 2018.

D. G. of E. Crops, Tree Crops Estate Statistics of Indonesia, 2016.
http://ditjenbun.pertanian.go.id

M. F. M. Faisal and M. Mahidin, Biomass Residue from Palm Oil Mills in Aceh Province: A Potential Usage for Sustainable Energy, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 3, no. 3, p. 222, 2013.
https://doi.org/10.18517/ijaseit.3.3.324

E. Sari, M. Effendy, N. Kanani, and R. Wardalia, Utilization of Empty Fruit Bunch Fiber of Palm Oil Industry for Bio-Hydrogen Production, Adv. Sci. Eng. Inf. Technol., vol. 8, pp. 842–848, 2018.
https://doi.org/10.18517/ijaseit.8.3.3985

R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, and A. S. Nizami, Catalytic pyrolysis of plastic waste: A review, Process Saf. Environ. Prot., vol. 102, pp. 822–838, 2016.
https://doi.org/10.1016/j.psep.2016.06.022

F. Abnisa and W. M. A. Wan Daud, A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil, Energy Convers. Manag., vol. 87, pp. 71–85, 2014.
https://doi.org/10.1016/j.enconman.2014.07.007

U. Desideri and C. Stroe, Conventional pyrolysis of spruce wood and hazelnut shell delivering oily products, J. Sustain. energy, vol. 2, no. 2, pp. 2–6, 2011.

P. Basu, Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Elsevier Inc., 2013.

R. M. Alagu, E. G. Sundaram, and E. Natarajan, “Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell,” Bioresour. Technol., vol. 193, pp. 463–468, 2015.
https://doi.org/10.1016/j.biortech.2015.06.132

G. Kumar, A. K. Panda, and R. K. Singh, Optimization of process for the production of bio-oil from eucalyptus wood, Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol., vol. 38, no. 2, pp. 162–167, 2010.
https://doi.org/10.1016/s1872-5813(10)60028-x

M. Garcia-Perez et al., Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products, Ind. Eng. Chem. Res., vol. 47, no. 6, pp. 1846–1854, 2008.
https://doi.org/10.1021/ie071497p

S. Zhang, Y. Yan, T. Li, and Z. Ren, Upgrading of liquid fuel from the pyrolysis of biomass, Bioresour. Technol., vol. 96, no. 5, pp. 545–550, 2005.
https://doi.org/10.1016/j.biortech.2004.06.015

G. Chen, J. Andries, Z. Luo, and H. Spliethoff, Biomass pyrolysis/gasification for product gas production: The overall investigation of parametric effects, Energy Convers. Manag., vol. 44, no. 11, pp. 1875–1884, 2003.
https://doi.org/10.1016/s0196-8904(02)00188-7

S. Völker and T. Rieckmann, Thermokinetic investigation of cellulose pyrolysis - Impact of initial and final mass on kinetic results, J. Anal. Appl. Pyrolysis, vol. 62, no. 2, pp. 165–177, 2002.
https://doi.org/10.1016/s0165-2370(01)00113-9

S. Kordoghli, M. Paraschiv, and R. Kuncser, Catalysts’ influence on thermochemical decomposition of waste tires, Environ. Prog. Sustain. Energy, vol. 36, no. 5, pp. 1560–1567, Sep. 2017.
https://doi.org/10.1002/ep.12605

Ö. Çepelioǧullar and A. E. Pütün, Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis, Energy Convers. Manag., vol. 75, pp. 263–270, 2013.
https://doi.org/10.1016/j.enconman.2013.06.036

S. M. Al-Salem, Establishing an integrated databank for plastic manufacturers and converters in Kuwait, Waste Manag., vol. 29, no. 1, pp. 479–484, Jan. 2009.
https://doi.org/10.1016/j.wasman.2008.02.030

M. Syamsiro et al., Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors, Energy Procedia, vol. 47, pp. 180–188, 2014.
https://doi.org/10.1016/j.egypro.2014.01.212

J. A. Onwudili, N. Insura, and P. T. Williams, Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time, J. Anal. Appl. Pyrolysis, vol. 86, no. 2, pp. 293–303, 2009.
https://doi.org/10.1016/j.jaap.2009.07.008

M. A. Sukiran, F. Abnisa, W. M. A. Wan Daud, N. Abu Bakar, and S. K. Loh, A review of torrefaction of oil palm solid wastes for biofuel production, Energy Convers. Manag., vol. 149, pp. 101–120, Oct. 2017.
https://doi.org/10.1016/j.enconman.2017.07.011

H. Yang, R. Yan, H. Chen, D. H. Lee, D. T. Liang, and C. Zheng, Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases, Fuel Process. Technol., vol. 87, no. 10, pp. 935–942, 2006.
https://doi.org/10.1016/j.fuproc.2006.07.001
S. Uguz, T. Ayeri, and Y. Ardeli, Co-pyrolysis of Polyethylene and Timber Powders: The Effect of Polyethylene on Pyrolysis Product Value, Nevşehir Bilim ve Teknol. Derg., vol. 6, pp. 306–313, 2017.

doi: 10.17100/nevbiltek.322387

N. Yuda Wardana, N. Caroko, and T. Thoharudin, Slow Pyrolysis Mixture Of Palm Shells And Plastics With Natural Zeolite Catalysts, Teknoin, vol. 22, no. 5, pp. 361–366, 2016.
https://doi.org/10.20885/teknoin.vol22.iss5.art5

M. Brebu, S. Ucar, C. Vasile, and J. Yanik, Co-pyrolysis of pine cone with synthetic polymers, Fuel, vol. 89, no. 8, pp. 1911–1918, 2010.
https://doi.org/10.1016/j.fuel.2010.01.029

L. Zhou, Y. Wang, Q. Huang, and J. Cai, Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis, Fuel Process. Technol., vol. 87, no. 11, pp. 963–969, 2006.
https://doi.org/10.1016/j.fuproc.2006.07.002
N. Caroko, H. Saptoadi, and T. A. Rohmat, Comparative Study On The Drying Of Oil Palm Solid Waste Using Conventional And Microwave, J. Eng. Sci. Technol., vol. 14, no. 4, 2020.

X. Zhao, Z. Song, H. Liu, Z. Li, L. Li, and C. Ma, Microwave pyrolysis of corn stalk bale: A promising method for direct utilization of large-sized biomass and syngas production, J. Anal. Appl. Pyrolysis, vol. 89, no. 1, pp. 87–94, 2010.
https://doi.org/10.1016/j.jaap.2010.06.001

A. A. Salema and F. N. Ani, Microwave induced pyrolysis of oil palm biomass, Bioresour. Technol., vol. 102, no. 3, pp. 3388–3395, 2011.
https://doi.org/10.1016/j.biortech.2010.09.115

Z. Du, Y. Li, and X. Wang, Microwave-assisted pyrolysis of microalgae for biofuel production, Bioresour. Technol., vol. 102, no. 7, pp. 4890–4896, 2011.
https://doi.org/10.1016/j.biortech.2011.01.055

H. Lei, S. Ren, and J. Julson, The effects of reaction temperature and time and particle size of corn stover on microwave pyrolysis, Energy and Fuels, vol. 23, no. 6, pp. 3254–3261, 2009.
https://doi.org/10.1021/ef9000264

M. Miura, H. Kaga, A. Sakurai, T. Kakuchi, and K. Takahashi, Rapid pyrolysis of wood block by microwave heating, J. Anal. Appl. Pyrolysis, vol. 71, no. 1, pp. 187–199, 2004.
https://doi.org/10.1016/s0165-2370(03)00087-1

A. A. Salema and F. N. Ani, Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer, J. Anal. Appl. Pyrolysis, vol. 96, pp. 162–172, 2012.
https://doi.org/10.1016/j.jaap.2012.03.018

A. A. Salema and F. N. Ani, Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer, J. Anal. Appl. Pyrolysis, vol. 96, pp. 162–172, 2012.
https://doi.org/10.1016/j.jaap.2012.03.018

A. Namazi, D. Allen, and C. Jia, Microwave-assisted pyrolysis and activation of pulp mill sludge, Biomass and Bioenergy, vol. 73, Feb. 2015.
https://doi.org/10.1016/j.biombioe.2014.12.023

Y. F. Huang, P. Te Chiueh, and S. L. Lo, A review on microwave pyrolysis of lignocellulosic biomass, Sustain. Environ. Res., vol. 26, no. 3, pp. 103–109, 2016.

The Editors of Encyclopaedia Britannica, Microwave oven Britannica. (accessed Jan. 19, 2019).
https://www.britannica.com/technology/microwave-oven

R. Omar, A. Idris, R. Yunus, K. Khalid, and M. I. Aida Isma, Characterization of empty fruit bunch for microwave-assisted pyrolysis, Fuel, vol. 90, no. 4, pp. 1536–1544, 2011.
https://doi.org/10.1016/j.fuel.2011.01.023

X. Zhao, M. Wang, H. Liu, L. Li, C. Ma, and Z. Song, A microwave reactor for characterization of pyrolyzed biomass, Bioresour. Technol., vol. 104, pp. 673–678, 2012.
https://doi.org/10.1016/j.biortech.2011.09.137

S. Ren et al., Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet, J. Anal. Appl. Pyrolysis, vol. 94, pp. 163–169, 2012.
https://doi.org/10.1016/j.jaap.2011.12.004

Z. Hu, X. Ma, and C. Chen, A study on experimental characteristic of microwave-assisted pyrolysis of microalgae, Bioresour. Technol., vol. 107, pp. 487–493, 2012.
https://doi.org/10.1016/j.biortech.2011.12.095

Y. Tian, W. Zuo, Z. Ren, and D. Chen, Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety, Bioresour. Technol., vol. 102, no. 2, pp. 2053–2061, 2011.
https://doi.org/10.1016/j.biortech.2010.09.082

A. Domínguez, J. A. Menéndez, M. Inguanzo, and J. J. Pis, Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge, Fuel Process. Technol., vol. 86, pp. 1007–1020, May 2005.
https://doi.org/10.1016/j.fuproc.2004.11.009

F. Chemat and M. Poux, Microwave assisted pyrolysis of urea supported on graphite under solvent-free conditions, Tetrahedron Lett., vol. 42, no. 22, pp. 3693–3695, 2001.
https://doi.org/10.1016/s0040-4039(01)00545-7

M. Chen et al., Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating, J. Anal. Appl. Pyrolysis, vol. 82, no. 1, pp. 145–150, 2008.
https://doi.org/10.1016/j.jaap.2008.03.001

Y. F. Huang, W. H. Kuan, S. L. Lo, and C. F. Lin, Total recovery of resources and energy from rice straw using microwave-induced pyrolysis, Bioresour. Technol., vol. 99, no. 17, pp. 8252–8258, 2008.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize