Open Access Open Access  Restricted Access Subscription or Fee Access

Effects of Soft Tissue Artifact in the Measurement of Hand Kinematics


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v14i4.18253

Abstract


Soft Tissue Artifact (STA) remains the most significant error for optoelectronic motion analyses based on surface markers. STA knowledge is fundamental for measurement confidence, providing indications about the significance of measured motion conditions of patients. STA is task-related and subject-dependent, but few actual datasets are currently available on STA in hand kinematics, with non-invasive techniques. Besides, STA depends on the measurement protocol, so normalization techniques as the deformation energy evaluation must be applied to make data comparable among different works. Focusing on hand kinematics, this paper presents: i) a new biomechanical model for the description of hand kinematics, and ii) design and results of an experimental campaign leading to a significant dataset of displacements of specific landmark points on fingers during flexion/extension using a non-invasive method. Experimental results show that STA produces an error up to 87% of the phalanges length and it can be suggested as clinical significance of optoelectronic measurements of the hand motion.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Deformation Energy; Hand Biomechanical Model; Optoelectronic System Measurement Error; STA Modal Analysis

Full Text:

PDF


References


A. Leardini, L. Chiari, U. Della Croce, A. Cappozzo, Human movement analysis using stereophotogrammetry, Gait & Posture, Vol. 21, n. 2, pp. 212–225, Feb. 2005.
https://doi.org/10.1016/j.gaitpost.2004.05.002

A. Peters, B. Galna, M. Sangeux, M. Morris, R. Baker, Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review, Gait & Posture, Vol. 31, n. 1, pp. 1–8, 2010.
https://doi.org/10.1016/j.gaitpost.2009.09.004

A. Cappozzo, F. Catani, A. Leardini, M. G. Benedetti, U. Della Croce, Position and orientation in space of bones during movement: experimental artefacts, Clinical Biomechanics, Vol. 11, n. 2, pp. 90–100, Mar. 1996.
https://doi.org/10.1016/0268-0033(95)00046-1

C. Schwartz, M. Lempereur, V. Burdin, J. J. Jacq, O. Remy-Neris, Shoulder motion analysis using simultaneous skin shape registration, in 2007 29th Annual International Conference of the {IEEE} Engineering in Medicine and Biology Society, 2007.
https://doi.org/10.1109/iembs.2007.4352345

E. S. Grood, W. J. Suntay, A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee, Journal of Biomechanical Engineering, Vol. 105, n. 2, p. 136, 1983.
https://doi.org/10.1115/1.3138397

G. K. Cole, B. M. Nigg, J. L. Ronsky, M. R. Yeadon, Application of the Joint Coordinate System to Three-Dimensional Joint Attitude and Movement Representation: A Standardization Proposal, Journal of Biomechanical Engineering, Vol. 115, n. 4A, p. 344, 1993.
https://doi.org/10.1115/1.2895496

J. Fuller, L.-J. Liu, M. C. Murphy, R. W. Mann, A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers, Human Movement Science, Vol. 16, n. 2–3, pp. 219–242, 1997.
https://doi.org/10.1016/s0167-9457(96)00053-x

C. Angeloni, A. Cappozzo, F. Catani, A. Leardini, Quantification of relative displacement between bones and skin-and plate-mounted markers, in Proceedings of the VIII Meeting on European Society Of Biomechanics, 1992, p. 279.
https://doi.org/10.1016/j.clinbiomech.2006.05.006

J. P. Holden, J. A. Orsini, K. L. Siegel, T. M. Kepple, L. H. Gerber, S. J. Stanhope, Surface movement errors in shank kinematics and knee kinetics during gait, Gait & Posture, Vol. 5, n. 3, pp. 217–227, 1997.
https://doi.org/10.1016/s0966-6362(96)01088-0

R. Dumas, V. Camomilla, T. Bonci, L. Cheze, A. Cappozzo, Generalized mathematical representation of the soft tissue artefact, Journal of Biomechanics, Vol. 47, n. 2, pp. 476–481, 2014.
https://doi.org/10.1016/j.jbiomech.2013.10.034

M. Akbarshahi, A. G. Schache, J. W. Fernandez, R. Baker, S. Banks, M. G. Pandy, Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity, Journal of Biomechanics, Vol. 43, n. 7, pp. 1292–1301, 2010.
https://doi.org/10.1016/j.jbiomech.2010.01.002

V. Camomilla, A. Cereatti, L. Chèze, A. Cappozzo, A hip joint kinematics driven model for the generation of realistic thigh soft tissue artefacts, Journal of Biomechanics, Vol. 46, n. 3, pp. 625–630, Feb. 2013.
https://doi.org/10.1016/j.jbiomech.2012.09.018

R. Hara, M. Sangeux, R. Baker, J. McGinley, Quantification of pelvic soft tissue artifact in multiple static positions, Gait and Posture, Vol. 39, n. 2, pp. 712–717, Feb. 2014.
https://doi.org/10.1016/j.gaitpost.2013.10.001

T. P. Andriacchi, E. J. Alexander, M. K. Toney, C. Dyrby, J. Sum, A point cluster method for in vivo motion analysis: Applied to a study of knee kinematics, Journal of Biomechanical Engineering, Vol. 120, n. 6, pp. 743–749, 1998.
https://doi.org/10.1115/1.2834888

K. A. Ball, M. R. Pierrynowski, Modeling of the pliant surfaces of the thigh and leg during gait, in Laser-Tissue Interaction IX, 1998, Vol. 3254, p. 435.
https://doi.org/10.1117/12.308193

J. H. Challis, A procedure for determining rigid body transformation parameters, Journal of Biomechanics, Vol. 28, n. 6, pp. 733–737, 1995.
https://doi.org/10.1016/0021-9290(94)00116-l

L. Chèze, B. J. Fregly, J. Dimnet, A solidification procedure to facilitate kinematic analyses based on video system data, Journal of Biomechanics, Vol. 28, n. 7, pp. 879–884, 1995.
https://doi.org/10.1016/0021-9290(95)95278-d

R. Dumas, L. Cheze, Soft tissue artifact compensation by linear 3D interpolation and approximation methods, Journal of Biomechanics, Vol. 42, n. 13, pp. 2214–2217, 2009.
https://doi.org/10.1016/j.jbiomech.2009.06.006

I. Soderkvist, P. A. Wedin, Determining the movements of the skeleton using well-configured markers, Journal of Biomechanics, Vol. 26, n. 12, pp. 1473–1477, 1993.
https://doi.org/10.1016/0021-9290(93)90098-y

W. R. Taylor, R. M. Ehrig, G. N. Duda, H. Schell, P. Seebeck, M. O. Heller, On the influence of soft tissue coverage in the determination of bone kinematics using skin markers, Journal of Orthopaedic Research, Vol. 23, n. 4, pp. 726–734, Jul. 2005.
https://doi.org/10.1016/j.orthres.2005.02.006

R. Dumas, V. Camomilla, T. Bonci, L. Chèze, A. Cappozzo, What Portion of the Soft Tissue Artefact Requires Compensation When Estimating Joint Kinematics?, Journal of Biomechanical Engineering, Vol. 137, n. 6, Jun. 2015.
https://doi.org/10.1115/1.4030363

R. Stagni, S. Fantozzi, A. Cappello, Double calibration vs. global optimisation: Performance and effectiveness for clinical application, Gait and Posture, Vol. 29, n. 1, pp. 119–122, Jan. 2009.
https://doi.org/10.1016/j.gaitpost.2008.07.008

A. G. Cutti, G. Paolini, M. Troncossi, A. Cappello, A. Davalli, Soft tissue artefact assessment in humeral axial rotation, Gait and Posture, Vol. 21, n. 3, pp. 341–349, 2005.
https://doi.org/10.1016/j.gaitpost.2004.04.001

P. Cerveri, N. Lopomo, A. Pedotti, G. Ferrigno, Derivation of Centers and Axes of Rotation for Wrist and Fingers in a Hand Kinematic Model: Methods and Reliability Results, Annals of Biomedical Engineering, Vol. 33, n. 3, pp. 402–412, Jan. 2005.
https://doi.org/10.1007/s10439-005-1743-9

D. A. Bourne, A. M. Choo, W. D. Regan, D. L. MacIntyre, T. R. Oxland, A new subject-specific skin correction factor for three-dimensional kinematic analysis of the scapula, Journal of Biomechanical Engineering, Vol. 131, n. 12, Dec. 2009.
https://doi.org/10.1115/1.4000284

T. Bonci, V. Camomilla, R. Dumas, L. Chèze, A. Cappozzo, A soft tissue artefact model driven by proximal and distal joint kinematics, Journal of Biomechanics, Vol. 47, n. 10, pp. 2354–2361, 2014.
https://doi.org/10.1016/j.jbiomech.2014.04.029

M. Begon, C. Bélaise, A. Naaim, A. Lundberg, L. Chèze, Multibody kinematics optimization with marker projection improves the accuracy of the humerus rotational kinematics, Journal of Biomechanics, Vol. 62, pp. 117–123, Sep. 2017.
https://doi.org/10.1016/j.jbiomech.2016.09.046

X. Zhang, S.-W. Lee, P. Braido, Determining finger segmental centers of rotation in flexion–extension based on surface marker measurement, Journal of Biomechanics, Vol. 36, n. 8, pp. 1097–1102, Aug. 2003.
https://doi.org/10.1016/s0021-9290(03)00112-x

M. Sati, J. A. De Guise, S. Larouche, G. Drouin, Quantitative assessment of skin-bone movement at the knee, Knee, Vol. 3, n. 3, pp. 121–138, 1996.
https://doi.org/10.1016/0968-0160(96)00210-4

J. H. Ryu, N. Miyata, M. Kouchi, M. Mochimaru, K. H. Lee, Analysis of skin movement with respect to flexional bone motion using MR images of a hand, Journal of Biomechanics, Vol. 39, n. 5, pp. 844–852, 2006.
https://doi.org/10.1016/j.jbiomech.2005.02.001

G. S. Rash, P. P. Belliappa, M. P. Wachowiak, N. N. Somia, A. Gupta, A demonstration of the validity of a 3-D video motion analysis method for measuring finger flexion and extension, Journal of Biomechanics, Vol. 32, n. 12, pp. 1337–1341, Dec. 1999.
https://doi.org/10.1016/s0021-9290(99)00140-2

G. Legnani, F. Casolo, P. Righettini, B. Zappa, A homogeneous matrix approach to 3D kinematics and dynamics - I. Theory, Mechanism and Machine Theory, 1996.
https://doi.org/10.1016/0094-114x(95)00100-d

G. Legnani, F. Casolo, P. Righettini, B. Zappa, A homogeneous matrix approach to 3D kinematics and dynamics - II. Applications to chains of rigid bodies and serial manipulators, Mechanism and Machine Theory, 1996.
https://doi.org/10.1016/0094-114x(95)00101-4

S. H. Nasir, O. Troynikov, Influence of hand movement on skin deformation: A therapeutic glove design perspective, Applied Ergonomics, 2017.
https://doi.org/10.1016/j.apergo.2016.11.006

Y. Wang, J. Wang, Design data for running tight: skin strain distribution on lower extremity based on decomposition of movement, Journal of the Textile Institute, Vol. 106, n. 5, pp. 469–479, May 2015.
https://doi.org/10.1080/00405000.2014.925628

A. Cappello, A. Cappozzo, P. F. La Palombara, L. Lucchetti, A. Leardini, Multiple anatomical landmark calibration for optimal bone pose estimation, Human Movement Science, Vol. 16, n. 2–3, pp. 259–274, 1997.
https://doi.org/10.1016/s0167-9457(96)00055-3

H. De Rosario, A. Page, A. Besa, V. Mata, E. Conejero, Kinematic description of soft tissue artifacts: Quantifying rigid versus deformation components and their relation with bone motion, Medical and Biological Engineering and Computing, 2012.
https://doi.org/10.1007/s11517-012-0978-5

L. Y. Chang, Y. Matsuoka, A kinematic thumb model for the ACT hand, in Proceedings - IEEE International Conference on Robotics and Automation, 2006, Vol. 2006, pp. 1000–1005.
https://doi.org/10.1109/robot.2006.1641840

M. Veber, T. Bajd, Assessment of human hand kinematics, in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006, Vol. 2006, pp. 2966–2971.
https://doi.org/10.1109/robot.2006.1642152

A. Gustus, G. Stillfried, J. Visser, H. Jörntell, P. van der Smagt, Human hand modelling: kinematics, dynamics, applications., Biological cybernetics, Vol. 106, n. 11–12, pp. 741–55, Dec. 2012.
https://doi.org/10.1007/s00422-012-0532-4

F. Cordella, L. Zollo, A. Salerno, D. Accoto, E. Guglielmelli, B. Siciliano, Human hand motion analysis and synthesis of optimal power grasps for a robotic hand, International Journal of Advanced Robotic Systems, Vol. 11, n. 1, pp. 1–13, 2014.
https://doi.org/10.5772/57554

S. H. Nasir, O. Troynikov, C. Watson, Skin deformation behavior during hand movements and their impact on functional sports glove design, in Procedia Engineering, 2015.
https://doi.org/10.1016/j.proeng.2015.07.181

doi. 10.1016/j.proeng.2015.07.181

N. Krueger, S. Luebberding, M. Oltmer, M. Streker, M. Kerscher, Age-related changes in skin mechanical properties: A quantitative evaluation of 120 female subjects, Skin Research and Technology, 2011.
https://doi.org/10.1111/j.1600-0846.2010.00486.x

B. Piovanelli, C. Amici, V. Cappellini, S. Negrini, Functional assessment of the spine through an optoelectronic system, in SIAMOC 2017 - Methodologic Poster Session, 2017.
https://doi.org/10.1016/j.gaitpost.2017.06.459

R. Degeorges, C. Oberlin, Measurement of three-joint-finger motions: Reality or fancy? A three-dimensional anatomical approach, Surgical and Radiologic Anatomy, 2003.
https://doi.org/10.1007/s00276-003-0104-3

J. M. Rehg, T. Kanade, Visual tracking of high DOF articulated structures: An application to human hand tracking, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1994.
https://doi.org/10.1007/bfb0028333

K. Langer, On the anatomy and physiology of the skin: III. The elasticity of the cutis, in British Journal of Plastic Surgery, 1978.

M. S. Andersen, M. Damsgaard, J. Rasmussen, D. K. Ramsey, D. L. Benoit, A linear soft tissue artefact model for human movement analysis: Proof of concept using in vivo data, Gait and Posture, 2012.
https://doi.org/10.1016/j.gaitpost.2011.11.032

C. J. H. Russell, J. A. Bush, G. W. P. Russell, A. Thorlby, D. A. McGrouther, V. C. Lees, Dynamic Skin Tension in the Forearm: Effects of Pronation and Supination, Journal of Hand Surgery, 2009.
https://doi.org/10.1016/j.jhsa.2008.10.029

I. Afriat Staloff, M. Rafailovitch, Measurement of skin stretch using digital image speckle correlation, Skin Research and Technology, 2008.
https://doi.org/10.1111/j.1600-0846.2008.00294.x

V. Richard, A. Cappozzo, R. Dumas, Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation, Journal of Biomechanics, 2017.
https://doi.org/10.1016/j.jbiomech.2017.01.030

J. H. Villafañe, K. Valdes, Reliability of pinch strength testing in elderly subjects with unilateral thumb carpometacarpal osteoarthritis, Journal of Physical Therapy Science, 2014.
https://doi.org/10.1589/jpts.26.993

J. H. Villafañe, K. Valdes, C. Vanti, P. Pillastrini, A. Borboni, Reliability of handgrip strength test in elderly subjects with unilateral thumb carpometacarpal osteoarthritis, Hand, 2015.
https://doi.org/10.1007/s11552-014-9678-y

J. H. Villafañe et al., Neural manual vs. robotic assisted mobilization to improve motion and reduce pain hypersensitivity in hand osteoarthritis: Study protocol for a randomized controlled trial, Journal of Physical Therapy Science, 2017.
https://doi.org/10.1589/jpts.29.801


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize