Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical Investigation of Hydrodynamic Behavior of Foil Shaped Zinc Anode for Reducing the Hull Appendages Effect

Ahmad Fauzan Zakki(1*), Good Rindo(2), Mohammad Ridwan(3), Bukhari Kusuma Alam(4)

(1) Naval Architecture Department, Engineering Faculty, Diponegoro University, Semarang, 50275, Indonesia
(2) Naval Architecture Department, Engineering Faculty, Diponegoro University, Semarang, 50275, Indonesia
(3) Industrial Technology Department, Vocational School, Diponegoro University, Semarang, 50275,, Indonesia
(4) Naval Architecture Department, Engineering Faculty, Diponegoro University, Semarang, 50275, Indonesia
(*) Corresponding author



Appendages are parts of a ship that might increase viscous resistance. The geometric shapes of appendages should be made appropriately in order to generate designs capable of reducing the negative effects of appendages. Therefore, the zinc anodes as sacrificial cathodic protection of ship hull are designed to decrease the amount of drag force that might cause an increase of the total resistance of ship, and it should be installed aligned with the direction of local flow. Regarding the effort to minimize the appendage effect, the foil shaped zinc anode has been proposed in order to improve the performance of drag force on the conventional zinc anode. This research is focused on investigating the hydrodynamic behavior of the foil shaped zinc anode in reducing the effect of hull appendages on ship performance. In this paper, a numerical study has been carried out using the Computational Fluid Dynamics (CFD) method. A comparison of the performance for each variation of foil shaped and conventional zinc anode will be discussed. The results show that foil shaped zinc anodes have generated smaller drag force compared with the conventional ones.
Copyright © 2020 Praise Worthy Prize - All rights reserved.


Foil Shaped Zinc Anode; Drag Force; Cathodic Protection; Sacrificial Anode and Hull Appendages

Full Text:



Ashworth, V., Principles of Cathodic Protection, 2013 [Online].

Voermans, A., Propulsion improvement – fuel saving by means of upgrading ship propulsion, Scandinavian Shipping Gazette, vol. 18, 2006.

Wärtsilä, Boosting Energy Efficiency, Presentation: Energy Efficiency Catalogue/Ship Power. [Online], 2009

Celis, J. P., Diomidis, N., Effect of hydrodynamics on zinc anodizing in silicate-based electrolytes, Surface & Coatings Technology, vol. 195, pp. 307-313, 2005.

Mathiazhagan, A., Design and Programming of Cathodic Protection for Ships, International Journal of Chemical Engineering and Applications, pp. 217-221, 2010.

Pastore, S., Belleze, T., Fratesi, T., Lorenzi, R.,Cathodic protection modelling of a propeller shaft, Corrosion Science, pp. 36-46, 2016.

Wang, F. Xu, J., Jiang, L., Ma, G., 2020. A comparative investigation on cathodic protections of three sacrificial anodes on chloride-contaminated reinforced concrete, Construction and Building Materials S0950061820304815, 2020.

Goyal, A., Olorunnipa, E.K., Pouya, H.S., Ganjian, E., Olubanwo, A.O., Potential and current distribution across different layers of reinforcement in reinforced concrete cathodic protection system- A numerical study. Construction and Building Materials S095006182032585X, 2020.

Feng, X., Yan, Q., Lu, X., Wu, T., Zhang, Y., Zuo, Y., Wang, J., 2020. Protection performance of the submerged sacrificial anode on the steel reinforcement in the conductive carbon fiber mortar column in splash zones of marine environments. Corrosion Science S0010938X20300974, 2020.

Adedeji, K., Ponnle, A., Abe, B., Jimoh, A., Abu-Mahfouz, A., Hamam, Y., A Review of the Effect of AC/DC Interference on Corrosion and Cathodic Protection Potentials of Pipelines, (2018) International Review of Electrical Engineering (IREE), 13 (6), pp. 495-508.

Kim, Yong-Sang, Kim, Jeongguk, Choi, Dooho, Lim, Jae-Yong, Kim, Jung-Gu. Optimizing the sacrificial anode cathodic protection of the rail canal structure in seawater using the boundary element method. Engineering Analysis with Boundary Elements, Vol.77, pp. 36-48, 2017

Santos, W.J., Brasil, S.L.D.C., Santiago, J.A.F., Telles, J.C.F. A new solution technique for cathodic protection systems with homogeneous region by the boundary element method. Eur. J. Comput. Mech. 27, pp. 368–382, 2018.

Kim, Y.S., Seok, S., Lee, J.S., Lee, S.K., Kim, J.G. Optimizing anode location in impressed current cathodic protection system to minimize underwater electric field using multiple linear regression analysis and artificial neural network methods. Engineering Analysis with Boundary Elements, Vol. 96, pp. 84-93, 2018.

Kim, Y.S.; Lee, S.K.; Chung, H.J.; Kim, J.G. Influence of a simulated deep sea condition on the cathodic protection and electric field of an underwater vehicle. Ocean Engineering, Vol. 148, pp. 223-23, 2018.

Rodopoulos, D.C., Gortsas, T.V., Tsinopoulos, S.V., Polyzos, D. ACA/BEM for solving large-scale cathodic protection problems. Engineering Analysis with Boundary Elements, 106, pp. 139–148, 2019.

Velten, S. B., Santos, W. J.; Brasil, S. L. D. C., Santiago, J. A. F.; Telles, J. C. F. A study of meshless methods for optimization of cathodic protection systems. Engineering Analysis with Boundary Elements, Vol. 107, p233-242, 2019.

Kalovelonis, D.T., Rodopoulos, D.C., Gortsas, T.V., Polyzos, D., Tsinopoulos, S.V. Cathodic Protection of A Container Ship Using A Detailed BEM Model. Journal of Marine Science and Engineering, Vol. 8 Issue 5, 2020.

Yingwei Liu, Zhongwu Zhang, Yang Zhang, Jianneng Zhang. Determination of the auxiliary anode position via finite element method in impressed current cathodic protection. Anti-Corrosion Methods and Materials, Vol. 66, Issue 4, pp. 432-438, 2019.

Windyandari, A., Haryadi, G., Suharto, S., Abar, I., Numerical Estimation of Glass Fiber Reinforced Plastic Propeller Performance Using Rigid and Flexible Model, (2019) International Review of Mechanical Engineering (IREME), 13 (4), pp. 218-223.

Vasyl'ev, H., Herasymenko, Yu. Corrosion Meters of New Generation Based on the Improved Method of Polarization Resistance. Materials Science, Vol. 52, pp. 722-731, 2017.

Liu, H., Dai, Y., Cheng, Y.F., Corrosion of underground pipelines in clay soil with varied soil layer thicknesses and aerations. Arabian Journal of Chemistry, Vol. 13, pp. 3601-3614, 2020

Peng, X., Zhou, X., Ye, Z., Dong, Y. Aging Precipitation Behavior of 316LN + Nb SS at 750 °C and Its Influences on Intergranular Corrosion Resistance. Steel Research International. Vol. 89, 2018.

Krauss, W., Wulf, S.E., Lorenz, J., Konys, J., Precipitation phenomena during corrosion testing in forced-convection Pb-15.7Li loop PICOLO. Fusion Engineering & Design: Part B, Vol. 146, p1782-1785, 2019.

Walsh, F.C., Kear, G., Nahlé, A.H., Wharton, J.A., Arenas, L.F. The rotating cylinder electrode for studies of corrosion engineering and protection of metals-an illustrated review. Corrosion Science, Vol.123, pp. 1-20, 2017.

Colli, A.N., Bisang, J.M. Time-dependent mass-transfer behaviour under laminar and turbulent flow conditions in rotating electrodes: A CFD study with analytical and experimental validation. International Journal of Heat and Mass Transfer, Vol. 137, pp. 835-846, 2019

Domżalicki, P., Lunarska, E., Birn, J., Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water. Mater Corros., Vol. 58, pp. 413-421, 2015.

Sun, D., Wu, D., Xie, F., Gong, K., Hydrogen permeation behavior of X70 pipeline steel simultaneously affected by tensile stress and sulfate-reducing bacteria. Int. J. Hydrogen Energy., Vol. 44, pp. 24065-24074, 2019

Kanerva, M., Energy Savings in Ships, Presentation: Meriliikenne ja Ympäristö, Deltamarin, Finland, 2005

Anderson, K., Lassesson, H., Energy efficiency in shipping, Chalmers University of Technology, Göteborg, 2009.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2021 Praise Worthy Prize