Open Access Open Access  Restricted Access Subscription or Fee Access

Experimental Evolution of Curvature with Substrate and Alumina Thicknesses on Aluminum Anodizing


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v14i3.17875

Abstract


In this paper, the evolution of damage when curving a substrate with an alumina layer has been studied. A sample preparation method has been used, so that substrate is free from any stress due to the adhesive insulation during the anodization of one side. The curvature evolution as a function of alumina layers thickness from 50 to 200 μm on aluminum substrates from 0.5 to 1.4 mm thick has been observed. Crack initiations start around film defects and spread transversely and longitudinally to eventually intersect. SEM examination of the anodized layers has shown that the stresses involved by curving create cracks up to 3 μm wide to provide accommodation of substrate-coating assembly. An approach has been adopted to describe the different stages of defects appearance with respect to stresses evolution. Due to internal stress effects, cracks continue to propagate and secondary ones are created in order to release the stored elastic energy in the interface substrate-alumina.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Alumina; Anodization; Curvature

Full Text:

PDF


References


Alsrayheen, Enam, Mcleod, Eric, Rateick Jr, Richard, et al. Impact of ac/dc spark anodizing on the corrosion resistance of Al–Cu alloys. Electrochimica acta, vol. 56, no 17, p. 6041-6048, 2011.
https://doi.org/10.1016/j.electacta.2011.04.088

Habazaki, H., Onodera, T., Fushimi, K., et al. Spark anodizing of β-Ti alloy for wear-resistant coating. Surface and Coatings Technology, vol. 201, no 21, p. 8730-8737, 2007.
https://doi.org/10.1016/j.surfcoat.2006.05.041

Ma, Y., Zhou, X., Thompson, G. E., et al. Discontinuities in the porous anodic film formed on AA2099-T8 aluminium alloy. Corrosion Science, vol. 53, no 12, p. 4141-4151, 2011.
https://doi.org/10.1016/j.corsci.2011.08.023

Shahzad, Majid, Chaussumier, Michel, Chieragatti, Rémy, et al. Influence of anodizing process on fatigue life of a machined aluminium alloy. Procedia Engineering 2, p 1015–1024, 2010.
https://doi.org/10.1016/j.proeng.2010.03.110

Hou, Zhaoxuan, Wan, Min, Wu, Xiangdong, et al. Roll forming of aluminum alloy profile with hat-shaped section. Procedia Manufacturing, vol. 15, p. 759-766, 2018.
https://doi.org/10.1016/j.promfg.2018.07.315

Juhl, Anne Deacon. Overview of anodizing in the aerospace industry. Metal Finishing, vol. 2, no 108, p. 20-21, 2010.
https://doi.org/10.1016/s0026-0576(10)00011-5

Patermarakis, G., Plytas, J. A novel theory interpreting the extremes of current during potentiostatic anodising of Al and the mechanisms of normal and abnormal growth of porous anodic alumina films. Journal of Electroanalytical Chemistry, vol. 769, p. 97-117, 2016.
https://doi.org/10.1016/j.jelechem.2016.03.012

Bensalah, W., Elleuch, K., Feki, M., et al. Mechanical failure of anodized film of aluminium in bending. Materials & Design, vol. 30, no 8, p. 3141-3149, 2009.
https://doi.org/10.1016/j.matdes.2008.11.023

Sulka, Grzegorz D., Parkoła, Krzysztof G. Anodising potential influence on well-ordered nanostructures formed by anodisation of aluminium in sulphuric acid. Thin Solid Films, vol. 515, no 1, p. 338-345, 2006.
https://doi.org/10.1016/j.tsf.2005.12.094

Aerts, Tim, Jorcin, Jean-Baptiste, De Graeve, Iris, et al. Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium. Electrochimica acta, vol. 55, no 12, p. 3957-3965, 2010.
https://doi.org/10.1016/j.electacta.2010.02.044

Bensalah, W., Elleuch, K., Feki, M., et al. Optimization of anodic layer properties on aluminium in mixed oxalic/sulphuric acid bath using statistical experimental methods. Surface and Coatings Technology, vol. 201, no 18, p. 7855-7864, 2007.
https://doi.org/10.1016/j.surfcoat.2007.03.027

Belwalkar, A., Grasing, E., Van Geertruyden, W., et al. Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. Journal of membrane science, vol. 319, no 1-2, p. 192-198, 2008.
https://doi.org/10.1016/j.memsci.2008.03.044

Ali, Raid, Pavan, S., Fridrici, V., et al. Temperature effect on the kinetic alumina layer growth on 5086 aluminum substrate. Mechanics, vol. 23, no 6, p. 923-930, 2017.
https://doi.org/10.5755/j01.mech.23.6.16309

L.E. Fratila-Apachitei, I. Apachitei And J Duszczyk; Thermal effect associate with hard anodizing of cost aluminum alloys; Journal of Applied Electrochemistry, 36:481-486, 2006.
https://doi.org/10.1007/s10800-005-9102-y

Mishra, Pratyush, Hebert, Kurt R. Self-organization of anodic aluminum oxide layers by a flow mechanism. Electrochimica Acta, p. 135879, 2020.
https://doi.org/10.1016/j.electacta.2020.135879

Wu, Jingcheng, Li, Yi, Li, Zhengxiang, et al. Ultra-slow growth rate: Accurate control of the thickness of porous anodic aluminum oxide films. Electrochemistry Communications, vol. 109, p. 106602. 2019.
https://doi.org/10.1016/j.elecom.2019.106602

Kozhukhova, A. E., Du Preez, S. P., Bessarabov, D. G. Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082). Surface and Coatings Technology, vol. 378, p. 124970. 2019.
https://doi.org/10.1016/j.surfcoat.2019.124970

Kongvarhodom, Chutima, Khumsa-Ang, Kittima, Siripornmongkolchai, Benjamaporn, et al. Anodic aluminum oxide film fabricated with galvanostatic anodization for non-electrolytic dyeing. Materials Letters, vol. 261, p. 126992 , 2020.
https://doi.org/10.1016/j.matlet.2019.126992

Chi, Choong-Soo, Lee, Jong-Ho, Kim, Insoo, et al. Effects of microstructure of aluminum substrate on ordered nanopore arrays in anodic alumina. Journal of Materials Science & Technology, vol. 31, no 7, p. 751-758, 2015.
https://doi.org/10.1016/j.jmst.2014.09.019

Setyarini, P., Soenoko, R., Suprapto, A., Irawan, Y., Properties of Electrochemical Impedance and Surface Characteristics of Anodized AA 6061, (2016) International Review of Mechanical Engineering (IREME), 10 (3), pp. 186-190.
https://doi.org/10.15866/ireme.v10i3.8751

Stoney, George Gerald. The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 82, no 553, p. 172-175, 1909.
https://doi.org/10.1098/rspa.1909.0021

Sulka, G. D., Parkoła, Krzysztof G. Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid. Electrochimica Acta, vol. 52, no 5, p. 1880-1888, 2007.
https://doi.org/10.1016/j.electacta.2006.07.053

Doering, D. L., Oda, T., Dickinson, J. T., et al. Characterization of anodic oxide coatings on aluminum by tribostimulated exoemission. Applications of Surface Science, vol. 3, no 2, p. 196-210, 1979.
https://doi.org/10.1016/0378-5963(79)90019-9

Asoh, Hidetaka, Ono, Sachiko, Hirose, Tomohito, et al. Growth of anodic porous alumina with square cells. Electrochimica Acta, vol. 48, no 20-22, p. 3171-3174, 2003.
https://doi.org/10.1016/s0013-4686(03)00347-5

Goueffon, Yann, Mabru, Catherine, Labarrère, Michel, et al. Investigations into the coefficient of thermal expansion of porous films prepared on AA7175 T7351 by anodizing in sulphuric acid electrolyte. Surface and Coatings Technology, vol. 205, no 7, p. 2643-2648, 2010.
https://doi.org/10.1016/j.surfcoat.2010.10.026

Sulka, Grzegorz D., Stępniowski, Wojciech J. Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochimica Acta, vol. 54, no 14, p. 3683-3691, 2009.
https://doi.org/10.1016/j.electacta.2009.01.046

Kikuchi, Tatsuya, Nishinaga, Osamu, Natsui, Shungo, et al. Polymer nanoimprinting using an anodized aluminum mold for structural coloration. Applied Surface Science, vol. 341, p. 19-27, 2015.
https://doi.org/10.1016/j.apsusc.2015.03.007

Jessensky, O., Müller, F., Et Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Applied physics letters, vol. 72, no 10, p. 1173-1175, 1998.
https://doi.org/10.1063/1.121004

Wei, Xiao-Wei Et Chen, Chao-Yin. Influence of oxidation heat on hard anodic film of aluminum alloy. Transactions of Nonferrous Metals Society of China, vol. 22, no 11, p. 2707-2712, 2012.
https://doi.org/10.1016/s1003-6326(11)61521-5

Bartolomé, Ma J., Del Rio, J. F., Escudero, E., et al. Behaviour of different bare and anodised aluminium alloys in the atmosphere. Surface and Coatings Technology, vol. 202, no 12, p. 2783-2793, 2008.
https://doi.org/10.1016/j.surfcoat.2007.10.019

Bensalah, W., Elleuch, K., Feki, M., et al. Optimization of mechanical and chemical properties of sulphuric anodized aluminium using statistical experimental methods. Materials Chemistry and Physics, vol. 108, no 2-3, p. 296-305, 2008.
https://doi.org/10.1016/j.matchemphys.2007.09.043

Franco, M., Anoop, S., Uma Rani, R., et al. Porous layer characterization of anodized and black-anodized aluminium by electrochemical studies. ISRN Corrosion, vol. 2012, 2012.
https://doi.org/10.5402/2012/323676

Hemmouche, L., Fares, C., Et Belouchrani, M. A. Influence of heat treatments and anodization on fatigue life of 2017A alloy. Engineering Failure Analysis, vol. 35, p. 554-561, 2013.
https://doi.org/10.1016/j.engfailanal.2013.05.003

Raid, A., Boualem, N., Fridrici, V., et al. Wear fretting behavior of thick HA anodizing alumina layer. Mechanics, vol. 17, no 4, p. 444-448, 2011.
https://doi.org/10.5755/j01.mech.17.4.578

Freund, L. B. Substrate curvature due to thin film mismatch strain in the nonlinear deformation range. Journal of the Mechanics and Physics of Solids, vol. 48, no 6-7, p. 1159-1174, 2000.
https://doi.org/10.1016/s0022-5096(99)00070-8

Mézin, André. Coating internal stress measurement through the curvature method: A geometry-based criterion delimiting the relevance of Stoney's formula. Surface and Coatings Technology, vol. 200, no 18-19, p. 5259-5267, 2006.
https://doi.org/10.1016/j.surfcoat.2005.06.018

Balasubramanian, S., Prabakar, K., Mukhiya, Ravindra, et al. Effect of biaxial curvature on the resonance frequency of uncoated microcantilevers. Sensors and Actuators A: Physical, vol. 304, p. 111857, 2020.
https://doi.org/10.1016/j.sna.2020.111857

Mezlini, Salah, Elleuch, Khaled, Kapsa, Philippe. The effect of sulphuric anodisation of aluminium alloys on contact problems. Surface and Coatings Technology, vol. 200, no 9, p. 2852-2856, 2006.
https://doi.org/10.1016/j.surfcoat.2005.01.105

Ngo, D., Huang, Y., Rosakis, A. J., et al. Spatially non-uniform, isotropic misfit strain in thin films bonded on plate substrates: The relation between non-uniform film stresses and system curvatures. Thin Solid Films, vol. 515, no 4, p. 2220-2229, 2006.
https://doi.org/10.1016/j.tsf.2006.05.013

Freund, L. B., Floro, J. A., Chason, E. Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Applied Physics Letters, vol. 74, no 14, p. 1987-1989, 1999.
https://doi.org/10.1063/1.123722

Klein, Claude A. How accurate are Stoney’s equation and recent modifications. Journal of Applied Physics, vol. 88, no 9, p. 5487-5489, 2000.
https://doi.org/10.1063/1.1313776

Huang, Y. Rosakis, A. J. Extension of Stoney's formula to non-uniform temperature distributions in thin film/substrate systems. The case of radial symmetry. Journal of the Mechanics and Physics of Solids, vol. 53, no 11, p. 2483-2500, 2005.
https://doi.org/10.1016/j.jmps.2005.06.003

Feng, Xue, Huang, Yonggang, Jiang, Hanqing, et al. The effect of thin film/substrate radii on the Stoney formula for thin film/substrate subjected to nonuniform axisymmetric misfit strain and temperature. Journal of Mechanics of Materials and Structures, vol. 1, no 6, p. 1041-1053, 2006.
https://doi.org/10.2140/jomms.2006.1.1041

Huang, Yonggang, Ngo, D., Rosakis, A. J. Non-uniform, axisymmetric misfit strain: in thin films bonded on plate substrates/substrate systems: the relation between non-uniform film stresses and system curvatures. Acta Mechanica Sinica, vol. 21, no 4, p. 362-370, 2005.
https://doi.org/10.1007/s10409-005-0051-9

Feng, X., Huang, Y., and Rosakis, A. J. (January 14, 2007). On the Stoney Formula for a Thin Film/Substrate System With Nonuniform Substrate Thickness. ASME. J. Appl. Mech. November 2007; 74(6): 1276–1281.
https://doi.org/10.1115/1.2745392

Zhao, Z. B., Hershberger, J., Yalisove, S. M., et al. Determination of residual stress in thin films: a comparative study of X-ray topography versus laser curvature method. Thin Solid Films, vol. 415, no 1-2, p. 21-31, 2002.
https://doi.org/10.1016/s0040-6090(02)00489-3

Dean, James, Gu, T., Clyne, T. W. Evaluation of residual stress levels in plasma electrolytic oxidation coatings using a curvature method. Surface and Coatings Technology, vol. 269, p. 47-53, 2015.
https://doi.org/10.1016/j.surfcoat.2014.11.006


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize