Open Access Open Access  Restricted Access Subscription or Fee Access

Laminar-Turbulent Transition on a Cambered NACA 16-009 Airfoil at Low Speed


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v14i6.17788

Abstract


Infrared thermography, force measurements, and oil flow visualizations are used to investigate the flow patterns around a cambered NACA16-409 airfoil at low Mach number. This cambered profile is widely used for propellers despite the lack of knowledge concerning its flow characteristics. The post-processing of thermograms relies on the analysis of the surface temperature gradient and identification of inflexion points in the temperature distribution. The observations made on the thermograms, based on the distribution of the temperature and Stanton number, are substantiated by the oil flow visualizations. RANS simulations with a transitional SST k-ω & γ turbulence model corroborate the analysis and deliver detailed insight in the flow around the airfoil. Depending on the angle of attack, three distinct flow patterns have been identified: laminar flow with early separation, laminar separation bubble with trailing edge separation, and turbulent flow with trailing edge separation. The shift between the last two regimes occurs sharply. The prediction capability of the transitional RANS simulations and XFOIL in terms of separation as well as reattachment location are compared with the experimental results. The force-coefficients dependency on the angle-of-attack, obtained by experiments, XFOIL, and RANS simulations, bear the traces from these flow patterns.
Copyright © 2020 The Authors - Published by Praise Worthy Prize under the CC BY-NC-ND license.

Keywords


Boundary Layer; Laminar-Turbulent Transition; Separation; Laminar Separation Bubble; Thermography; NACA16-Series

Full Text:

PDF


References


Borst, H.: Summary of propeller design procedure and data. volume i: aerodynamic design and installation. Technical Report 73-34A, Army Air Mobility Research and Development Laboratory, Rosemont (USA) (1973)

Taverna, F.: Advanced airfoil design for general aviation propellers. Journal of Aircraft 21(9), 649–657 (1984)
https://doi.org/10.2514/3.45010

Black, D., Menthe, R., Wainauski, H.: Aerodynamic design and performance testing of an advanced 30° swept, eight bladed propeller at Mach numbers from 0,2 to 0,85. Contractor Report CR 3047, National Aeronautics and Space Administration, NASA Lewis research center (USA) (1978)

Gur, O., Rosen, A.: Optimization of propeller based propulsion system. In: 49 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, vol. 46, pp. 95–106 (2009)
https://doi.org/10.2514/6.2008-1977

Marinus, B.: Multidisciplinary optimization of aircraft propeller blades. Phd, Centrale Lyon - Royal Military Academy - von Karman Institute, Brussels (2011) (available at www.theses.fr/2011ECDL0033)

Tan, C.H., Voo, K.S., Siauw, W.L., Alderton, J., Boudjir, A., Mendona, F.: CFD analysis of the aerodynamics and aeroacoustics of the NASA SR-2 propeller. In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, GT2014-26779. Düsseldorf (Germany) (2014).
https://doi.org/10.1115/gt2014-26779

Giannakakis, P., Laskaridis, P., Nikolaidis, T., Kalfas, A.I.: Toward a scalable propeller performance map. Journal of Propulsion and Power 31(4), 1073–1082 (2015).
https://doi.org/10.2514/1.b35498

Morgado, J.; Silvestre, M., Páscoa, J.: Validation of new formulations for propeller analysis, Journal of Propulsion and Power 31(1), 467-477 (2015).
https://doi.org/10.2514/1.b35240

Villar, G.; Lindblad, D., Andersson, N.: Effect of airfoil parametrization on the optimization of counter rotating open rotors. In: AIAA Scitech 2019 Forum, AIAA 2019-0698. San Diego (USA) (2019).
https://doi.org/10.2514/6.2019-0698

Abbott, I., von Doenhoff, A., Stivers Jr, L.: Summary of airfoil data. Report R-824, NACA, NACA-Langley aeronautical laboratory (USA) (1945)

Lindsey, W., Stevenson, D., Daley, B.: Aerodynamic characteristics of 24 NACA 16-series airfoils at Mach numbers between 0.3 and 0.8. Tech. Rep. TN 1546, NACA, Langley (1948)

Cleary, H.E.: The effects of Reynolds number on the application of NACA 16-series airfoil characteristics to propeller design. Tech. Rep. NACA TN-2591, NACA (1952)

Schlichting, H., Boundary-Layer Theory (7th edition, McGraw-Hill, 1979).

Crivellini, A., DAlessandro, V.: Spalart-Allmaras model apparent transition and RANS simulations of laminar separation bubbles on airfoils. International Journal of Heat and Fluid Flow 47, 70–83 (2014).
https://doi.org/10.1016/j.ijheatfluidflow.2014.03.002

Ghorbanishohrat, F., Johnson, D.: Evaluating airfoil behaviour such as laminar separation bubbles with visualization and IR-thermography methods. Institute of Physics Publishing (2018).
https://doi.org/10.1088/1742-6596/1037/5/052037

Mertens, C., Wolf, C., Gardner, A., Schrijer, F., Van Oudheusden, B.: Advanced infrared thermography data analysis for unsteady boundary layer transition detection. Measurement Science and Technology 31(1), id.015301 (2020).
https://doi.org/10.1088/1361-6501/ab3ae2

Mertens, C., Wolf, C., Gardner, A.: Unsteady Boundary Layer Transition Detection with Local Infrared Thermography. Notes on Numerical Fluid Mechanics and Multidisciplinary Design 142, 382-391 (2020).
https://doi.org/10.1007/978-3-030-25253-3_37

Wolf, C., Mertens, C., Gardner, A., Dollinger, C., Fischer, A.: Optimization of differential infrared thermography for unsteady boundary layer transition measurement. Experiments in Fluids 60, 19 (2019).
https://doi.org/10.1007/s00348-018-2667-0

Dollinger, C., Balaresque, N., Gaudern, N., Gleichauf, D., Sorg, M., Fischer, A.: IR thermographic flow visualization for the quantification of boundary layer flow disturbances due to the leading edge condition. Renewable Energy 138, 709-721 (2019).
https://doi.org/10.1016/j.renene.2019.01.116

Reichstein, T., Schaffarczyk, A., Dollinger, C., Balaresque, N., Schülein, E., Jauch, C., Fischer, A.: Investigation of laminar-turbulent transition on a rotating wind-turbine blade of multimegawatt class with thermography and microphone array. Energies 12(11), 2102 (2019).
https://doi.org/10.3390/en12112102

Gardner, A., Wolf, C., Raffel, M.: Review of measurement techniques for unsteady helicopter rotor flows. Progress in Aerospace Sciences 111, 100566 (2019).
https://doi.org/10.1016/j.paerosci.2019.100566

Ye, Q., Avallone, F., Ragni, D., Choudhari, M., Casalino, D: Boundary layer transition induced by distributed roughness array. In: 11th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2019. Southampton (United Kingdom) (2019)
https://doi.org/10.2514/6.2019-2551

Ghorbanishohrat, F., Johnson, D. A.: Evaluating airfoil behaviour such as laminar separation bubbles with visualization and IR thermography methods. In: 7th Conference on Science of Making Torque from Wind, Journal of Physics Conference Series 1037, UNSP 052037, Milan (Italy) (2018).
https://doi.org/10.1088/1742-6596/1037/5/052037

Jelinek, T.: Experimental Investigation of the Boundary Layer Transition on a Laminar Airfoil Using Infrared Thermography. In: 12th International Conference on Experimental Fluid Mechanics, EPJ Web of Conferences 180, UNSP 02040, Mikulov (Czech Republic) (2018).
https://doi.org/10.1051/epjconf/201818002040

von Hoesslin, S., Stadlbauer, M., Gruendmayer, J., Kähler, C.J.: Temperature decline thermography for laminar–turbulent transition detection in aerodynamics. Experiments in Fluids 58(9), 129 (2017).
https://doi.org/10.1007/s00348-017-2411-1

Gardner, A., Eder, C., Wolf, C., Raffel, M.: Analysis of differential infrared thermography for boundary layer transition detection, Experiments in Fluids 58(9), 122 (2017).
https://doi.org/10.1007/s00348-017-2405-z

Raffel, M., Merz, C., Schwermer, T., Richter, K.: Differential infrared thermography for boundary layer transition detection on pitching rotor blade models. Experiments in Fluids 56(2) (2015).
https://doi.org/10.1007/s00348-015-1905-y

Simon, B., Filius, A., Tropea, C., Grundmann, S.: IR thermography for dynamic detection of laminar-turbulent transition. Experiments in Fluids 57(5), 1–12 (2016).
https://doi.org/10.1007/s00348-016-2178-9

Gardner, A., Eder, C., Wolf, C., Raffel, M.: Analysis of differential infrared thermography for boundary layer transition detection. Experiments in Fluids 58(9) (2017).
https://doi.org/10.1007/s00348-017-2405-z

Joseph, L., Borgoltz, A., Devenport, W.: Infrared thermography for detection of laminar-turbulent transition in low-speed wind tunnel testing. Experiments in Fluids 57(5) (2016).
https://doi.org/10.1007/s00348-016-2162-4

Szewczyk, M., Smusz, R., De Groot, K., Meyer, J., Kucaba-Pietal, A., Rzucidlo, P.: In-flight investigations of the unsteady behaviour of the boundary layer with infrared thermography. Measurement Science and Technology 28(4) (2017).
https://doi.org/10.1088/1361-6501/aa529c

Hue, D., Vermeersch, O., Bailly, D., Brunet, V., Forte, M: Experimental and Numerical Methods for Transition and Drag Predictions of Laminar Airfoils. AIAA Journal 53(9), 2694-2712 (2015).
https://doi.org/10.2514/1.j053788

Raffel, M., Merz, C.: Differential infrared thermography for unsteady boundary-layer transition measurements. AIAA Journal 52(9), 2090–2093 (2014).
https://doi.org/10.2514/1.j053235

Carlomagno, G., Cardone, G.: Infrared thermography for convective heat transfer measurements. Experiments in Fluids 49, 1187-1218 (2010).
https://doi.org/10.1007/s00348-010-0912-2

Ricci, R., Montelpare, S., A quantitative IR thermographic method to study the laminar separation bubble phenomenon. International Journal of Thermal Sciences 44(8), 709–719 (2005).
https://doi.org/10.1016/j.ijthermalsci.2005.02.013

Gartenberg, E. & Oberts A.S., J.: Twenty-five years of aerodynamic research with infrared imaging. Journal of Aircraft 29(2), 161-171 (1992).
https://doi.org/10.2514/3.46140

TC 180/SC 4 Systems - Thermal performance, reliability and durability: Solar heating – domestic water heating systems – part 1: Performance rating procedure using indoor test methods. Tech. Rep. ISO 9459-1:1993, International Organization for Standardization (1993)

Bosschaerts, W., Suy, O., Marinus, B.: Testing renewable energy equipment: Space heating and warm sanitarian water production - Setup of a test facility. European journal of mechanical and environmental engineering 48(2), 109–119 (2003)

Richter, K., Schülein, E.: Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography. Experiments in Fluids 55(1755), 1–13 (2014).
https://doi.org/10.1007/s00348-014-1755-z

Krynytzky, A., Ewald, B.: Conventional wall corrections for closed and open test sections, pp. 2–1 – 2–66. AGARD-AG-336 (1998)

Celik, I., Ghia, U., Roache, P., Freitas, C., Coleman, H., Raad, P.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering 130(7), 1–4 (2008)
https://doi.org/10.1115/1.2960953

Reynolds, R., Sammonds, R., Walker, J.: Investigation of single- and dual-rotation propellers at positive and negative thrust, and in combination with an NACA 1-series D-type cowling at Mach numbers up to 0,84. Technical Report TR-1336, NACA, NACA-Ames aeronautical laboratory (USA) (1957)

Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32(8), 1598–1605 (1994).
https://doi.org/10.2514/3.12149

Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Volker., S.: A correlation-based transition model using local variables: Part i model formulation. In: Volume 4: Turbo Expo 2004, ASME-GT2004-53452 (2004).
https://doi.org/10.1115/gt2004-53452

Langtry, R., Menter, F.: Transition modeling for general CFD applications in aeronautics. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2005-522. Reno (USA) (2005).
https://doi.org/10.2514/6.2005-522

Langtry, R. B., Menter, F.R.: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal 47(12), 28942906 (2009).
https://doi.org/10.2514/1.42362

Abu-Ghannam, B.J., Shaw, R.: Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history. Journal of Mechanical Engineering Science 22(5), 213–228 (1980).
https://doi.org/10.1243/jmes_jour_1980_022_043_02

Drela, M., Giles, M.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA Journal 25(10), 1347–1355 (1987).
https://doi.org/10.2514/3.9789

Wang, G., Mian, H.H., Ye, Z.Y., Lee, J.D.: Numerical study of transitional flow around NLR-7301 airfoil using correlation-based transition model. Journal of Aircraft 51(1), 342–349 (2014).
https://doi.org/10.2514/1.c032211

Barlow, Jewel B., William H. Rae, Alan Pope, Low-Speed Wind Tunnel Testing (3rd edition, Wiley, 1999).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize