Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling and Implementation of a Proportional Hydraulic System to Control the Position and Pressure of a Plastic Extruder


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v14i1.17648

Abstract


In this research, a proportional hydraulic system for the position control of a double-acting cylinder using Fuzzy Logic and PID for the pressure control of a hydraulic motor is modeled and implemented in a plastic extruder. The closed-loop control system is implemented with Festo's TP 702 Advanced Level Proportional Hydraulics, using a controller, an industrial display, a graphical interface, and a link to MATLABTM fuzzy control and PID_Tuner for graphics. The modeling provides the process transfer function, proportional control constants, and the position and pressure control graphics, which are then validated between the graphics of the WinCC Advanced interface of the physical process implementation with S7-1200 and 1500 PLCs, generating a graphic comparison of the control of the position and pressure variable. An accuracy error of 1% is generated between the results of the modeling and the physical implementation, which is acceptable in an industrial process. The HMI and the SCADA system have been implemented in WinCC Basic and WinCC Advanced respectively, generating a local and remote real-time graphical interface. The mathematical modeling of the industrial process, its visualization and the real-time information acquisition guarantees the reliability and the optimal behavior of the plastics extrusion process, minimizing the production costs and the raw material waste.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Position and Pressure Control; Proportional Control; Modeling; MATLABTM; Hydraulic Valves

Full Text:

PDF


References


A. Molina, H. Ponce, P. Ponce, G. Tello y M. Ramírez, Artificial hydrocarbon networks fuzzy inference systems for CNC machines position controller, The International Journal of Advanced Manufacturing Technology, vol. 72, p. 1465–1479, 2014.
https://doi.org/10.1007/s00170-014-5676-z

L. Wang, W. Wang, Y. Du, Huang y Yi, A novel adaptive fuzzy PID controller based on piecewise PID controller for dynamic positioning of sandglass-type FDPSO, Journal of Marine Science and Technology, vol. 24, p. 720–737, 2019.
https://doi.org/10.1007/s00773-018-0584-9

S. Mu, S. Goto, S. Shibata y T. Yamamoto, Intelligent position control for pneumatic servo system based on predictive fuzzy control., Computers and Electrical Engineering, vol. 75, pp. 112-122, 2019.
https://doi.org/10.1016/j.compeleceng.2019.02.016

E. Priyanka, C. Maheswari y S. Thangavel, Online Monitoring and Control of Flow rate in Oil Pipelines Transportation System by using PLC based Fuzzy-PID Controller, Flow Measurement and Instrumentation, vol. 62, p. 146, 2018.
https://doi.org/10.1016/j.flowmeasinst.2018.02.010

Basjaruddin, N., Rakhman, E., Firdaus, R., Kuspriyanto, K., Simple Hand Gesture Recognition Based on Fuzzy Logic for Controlling Mobile Robot, (2019) International Review of Automatic Control (IREACO), 12 (2), pp. 89-94.
https://doi.org/10.15866/ireaco.v12i2.16693

Amine, S., Mokhiamar, O., Hammoud, M., Fuzzy Logic Position Control of Pneumatic Actuators, (2018) International Review of Mechanical Engineering (IREME), 12 (3), pp. 213-222.
https://doi.org/10.15866/ireme.v12i3.12955

Kahouli, A., Guesmi, T., Hadj Abdallah, H., Abderrazak, O., Fuzzy Control Approach for Monomachine Power Systems, (2019) International Journal on Engineering Applications (IREA), 7 (5), pp. 179-187.
https://doi.org/10.15866/irea.v7i5.18408

J. Rodríguez, Comparative study of diffuse PID control techniques applied to performance improvement of continuous control loops., D. d. E. y. E. Facultad de Ingeniería, Ed., Bogotá: Universidad Nacional de Colombia, 2018.
https://doi.org/10.22201/fi.25940732e.2018.19n2.014

Herlambang, T., Subchan, S., Nurhadi, H., Design of Motion Control Using Proportional Integral Derivative for UNUSAITS AUV, (2018) International Review of Mechanical Engineering (IREME), 12 (11), pp. 928-938.
https://doi.org/10.15866/ireme.v12i11.15758

Orjuela, A., Ramos, O., Amaya, D., PID Control for Distilled Product and Bottom Concentration in a Binary Distillation Column, (2017) International Review of Mechanical Engineering (IREME), 11 (4), pp. 242-248.
https://doi.org/10.15866/ireme.v11i4.8767

C. Lapusan, R. Balan, O. Hancu y A. Plesa., Development of a multi-room building thermodynamic model using SIMSCAPE Library, Energy Procedia, vol. 85, pp. 320-328, 2016.
https://doi.org/10.1016/j.egypro.2015.12.258

G. Tamilselvan y P. Aarthy, Fuzzy control system for variable rate irrigation using remote sensing, Expert System with Applocations, vol. 124, pp. 13-24, 2019.

C. Lorenzini, A. S. Bazanella, L. F. A. Pereira y G. R. G. d. Silva., The generalized forced oscilation method for tuning PID controllers, ISA Transactions, vol. 87, pp. 68-87, 2019.
https://doi.org/10.1016/j.isatra.2018.11.014

J.-Y. Chen, K.-C. Tai y G.-C. Chen, Application of Programmable Logic Controller to Build-up an Intelligent Industry 4.0 Platform, Procedia CIRP, vol. 63, pp. 150-151, 2017.
https://doi.org/10.1016/j.procir.2017.03.116

A. Rajan Panda, D. Mishra y H. Krishna Ratha, Implementation of SCADA/HMI system for real-time controlling and performance monitoring of SDR based flight termination system, Journal of Industrial Information Integration, vol. 3, p. 20, September 2016.
https://doi.org/10.1016/j.jii.2016.07.001

W. Sánchez, Ó. Proaño, P. Salazar, E. Salazar, W. Loza y J. E. Sánchez., Distributed System SCADA using Multiple Industrial Communication Protocols on Allen Bradley Equipment, Indian Journal of Science and Technology, vol. 12, n° 14, 04 2019.

R. Khrosravanian, S. Mohammad, D. A. Wood y A. Shahryari, Weight on drill bit prediction models: Sugeno-type and Mamdani-type fuzzy inference systems compared, Journal of Natural Gas Science and Engineering, vol. 36, pp. 280-281, 04 2016.
https://doi.org/10.1016/j.jngse.2016.10.046

A. Giannakis, A. Krlis y Y. L. Karnavas, A combined control strategy of a DFIG based on a sensorless power control throught modified phase-locked loop and fuzzy logic controllers, Renewable Energy, vol. 121, pp. 493-494, 2018.
https://doi.org/10.1016/j.renene.2018.01.052

Matlab, «MathWorks,» 2019. [Online]. Available:
https://www.mathworks.com/products/fuzzy-logic.html?s_tid=srchtitle.

M. A. Sellittlo, E. Balugani, R. Gamberini y B. Rimini, A Fuzzy Logic Control application to the Cement Industry, IFAC - PapersOnLine, vol. 51, pp. 1542-1543, 2018.
https://doi.org/10.1016/j.ifacol.2018.08.277

R. Khosravanian, M. Sabah, D. A. Wood y A. Shahryari, Weight on drill bit prediction models: Sugeno-type and Mamdani-type fuzzy inference systems compared, Journal of Natural Gas Science and Engineering, vol. 36, pp. 280-282, November 2016.
https://doi.org/10.1016/j.jngse.2016.10.046

C. Lapusan, R. Balan, O. Hancu y A. Plesa, Development of a Multi-Room Building Thermodynamic Model Using Simscape Library, Procedia Energética, vol. 16, p. 321, 2016.
https://doi.org/10.1016/j.egypro.2015.12.258

Ciprian Lapusan, Radu Balan, Olimpiu Hancu, Alin Plesa, Development of a Multi-Room Building Thermodynamic Model Using Simscape Library, Energy Procedia, Volume 85, 2016,
https://doi.org/10.1016/j.egypro.2015.12.258

Matlab, «MathWorks,» 2019. [Online]. Available: https://www.mathworks.com/help/simulink/slref/saturation.html?searchHighlight=saturation&s_tid=doc_srchtitle.

MATLAB, «MathWorks,» 2019. [Online]. Available: http://www.mathworks.com/.

O. Khan, C. Madhuranthakam, P. Douglas y H. Lau, Optimized PID controller for an industrial biological fermentation process, Journal of Process Control, vol. 71, pp. 75-76, November 2018.
https://doi.org/10.1016/j.jprocont.2018.09.007

MATLAB, «MathWorks,» 2019. [Online]. Available: https://la.mathworks.com/discovery/pid-control.html?fbclid=IwAR0fRvjFz1z98RclWJTBEV0AtbUxWdmlA1z_IHML82yhgCWxKtT648msKmg.

L. Merigo, F. Padula, N. Latronico, T. Mendonca, M. Paltengui, P. Rocha y A. Visioli, Optimized PID tuning for the automatic control of neuromuscular blockade, IFAC- PapersOnLine, vol. 51, pp. 66-67, 2018.
https://doi.org/10.1016/j.ifacol.2018.06.032

S. I. O. Support, Process Data Acquisition and Monitoring, 2017.

Bishop, R. C. y D. -. R. J., Mathematical system models, Modern control systems, Madrir: Pearson Education S.A., 2007, pp. 52-62.

M. Kumar y R. Singh, Comparison of non-linear, linearized 2nd order and reduced to FOPDT models of CSTR using different tuning methods, Resource-Efficient Technologies, vol. 2, pp. S71-S72, December 2016.
https://doi.org/10.1016/j.reffit.2016.11.003

R. Alanen, Auto-tuning Control Based on Åström's y Hägglund's theory, University of Oulu, 1993.

D. Kishore, K. A. Kishore y R. Panda, Identification and control of process using the Modified asymmetrical Relay Feedback method, Procedia Computer Science, vol. 133, p. 1030, 2018.
https://doi.org/10.1016/j.procs.2018.07.072

K. Ogata, de Modern control engineering, Madrid, Pearson Education S.A., 2003, pp. 683-690.

F. A. Fernandes, G. S. Sestillo, A. L. Dias, D. Brandão y P. Ferrari., Influence of network parameters on the recovery time of a ring topology PROFINET network, IFAC Conference Paper Archive, vol. 49, nº 30, pp. 278-283, 2016.
https://doi.org/10.1016/j.ifacol.2016.11.141

S. I. O. Support, PID Control with PID_ Compact, 2014, pp. 2-50.

J. Wiley and Sons, Automating with SIMATIC, 5th ed., 2012.

S. McGrady, Introduction, de Designing Scada Application Software, Canada, Elsiever, 2013, pp. 1-10.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize