Open Access Open Access  Restricted Access Subscription or Fee Access

Crack-Tip Opening Displacement Behavior Based on Energy Partitioned Work of Fracture Technique on Ultraviolet-Irradiated Mordenite Zeolite-High Density Polyethylene Composites


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v13i11.17584

Abstract


Crack-tip opening displacement (CTOD) has been widely used to measure the fracture toughness of materials. Based on the energy partitioned work of fracture concept, CTOD behavior is able to describe in more depth the characteristics of mechanical fracture of materials. This study aims to investigate the CTOD behavior in the ultraviolet (UV) irradiated zeolite-HDPE composites. The annealed double-edge notched tension (DENT) shape composite was exposed in UV radiation environment for 50, 100, 150 and 200 hours at a constant temperature of 60oC and atmospheric pressure. The DENT specimens are subjected tensile loaded according to ESIS protocol. CTOD was analyzed based on the concept of partitioned work of fracture. The results show that at the yielding and crack initiation stage, the CTOD value begins to increase when the displacement has passed the 0.5 mm value. At the crack propagation stage, the range of CTOD and displacement values are shorter with increasing duration of UV radiation. At the same crack extension, the CTOD value decreases by increasing the duration of UV radiation.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Crack Tip Opening Displacement; Displacement; Crack Extension; Load; Behavior

Full Text:

PDF


References


Y. Chen, N.M. Stark, M.A. Tshabalala, J. Gao, Y. Fan, Weathering characteristics of wood plastic composites reinforced with extracted or delignified wood flour, Materials, Vol. 9, pp. 610, 2016.
https://doi.org/10.3390/ma9080610

L. Soccalingame, D. Perrin, Bénézet, J.C., A. Bergeret, A, Reprocessing of UV-Weathered wood flour reinforced polypropylene composites: Study of a natural outdoor exposure. Polymer Degradation and Stability, Vol. 133, n 133, pp. 389–398, 2016.
https://doi.org/10.1016/j.polymdegradstab.2016.09.011

T. Lu, E. Solis-Ramos, Y.Yi, M.Kumosa, UV degradation model for polymers and polymer matrix composites, Polymer Degradation and Stability, Vol. 154, pp. 203-210, 2018.
https://doi.org/10.1016/j.polymdegradstab.2018.06.004

L. Markovicová, V. Zatkalíková, The effect of UV aging on structural polymers, IOP Conf. Series: Materials Science and Engineering, Vol. 465, 012004, 2019.
https://doi.org/10.1088/1757-899x/465/1/012004

E. Yousif, R. Haddad, Photodegradation and photostabilization of polymers, especially polystyrene: review, Springerplus. Vol. 2, pp. 398, 2013.
https://doi.org/10.1186/2193-1801-2-398

I. N. Gogotov, S. K. Barazov, The effect of ultraviolet light and temperature on the degradation of composite polypropylene, Plasticheskie Massy, Vol. 41, n 12, pp. 55-58, 2012.
https://doi.org/10.1177/0307174x1404100313

A. Martínez-Romo, R. González-Mota, J. J. Soto-Bernal, I. Rosales-Candelas, Investigating the Degradability of HDPE, LDPE, PE-BIO, and PE-OXO Films under UV-B Radiation, Journal of Spectroscopy, Vol. 2015, Article ID 586514, 6 pages, 2015.
https://doi.org/10.1155/2015/586514

S. Nikafshar, O. Zabihi, M. Ahmadi, A. Mirmohseni, M. Taseidifar, M. Naebe, The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber, Materials (Basel). Vol. 10, n. 2, pp. 180, 2017.
https://doi.org/10.3390/ma10020180

K. Chaochanchaikul, N. Sombatsompop. Stabilizations of molecular structures and mechanical properties of PVC and wood/PVC composites by tinuvin and TiO2 stabilizers. Polymer Engineering and Science, Vol. 51, n. 7, pp.1354–1365, 2011.
https://doi.org/10.1002/pen.21893

N. Petchwattana, S. Covavisaruch, S. Chanakul. Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene. Journal of Polymer Research, Vol. 19, n. 7, pp. 9921, 2012.
https://doi.org/10.1007/s10965-012-9921-6

J. Zhao, G. Cai, L. Cui, A. S. Larbi, K. D. Tsavdaridis, Deterioration of Basic Properties of the Materialsin FRP-Strengthening RC Structures under Ultraviolet Exposure, Polymers, Vol. 9,n. 9, pp. 402, 2017.
https://doi.org/10.3390/polym9090402

K. Pavelic, M. Hadzija, Medical Applications of Zeolites in Hand Book of Zeolites Sciences and Technology, Marcel Dekker, Inc, New York, 2003.

Purnomo, R. Soenoko, A. Suprapto, Y. S. Irawan, Impact Fracture Toughness Evaluation by Essential Work of Fracture Method in High-Density Polyethylene Filled with Zeolite, FME Transactions, Vol. 44, n. 2, pp. 180-186, 2016.
https://doi.org/10.5937/fmet1602180p

Purnomo, R. Soenoko, Y. S. Irawan, A. Suprapto, Deformation Under Quasi Static Loading In High Density Polyethylene Filled With Natural Zeolite, Journal of Engineering Science and Technology, Vol. 12, n. 5, pp. 1191-2203, 2017.

Purnomo, P., Setyarini, P., Atmospheric-Pressure Annealing Effect on the Impact Fracture Toughness of Injection-Molded Zeolite-HDPE Composite, (2018) International Review of Mechanical Engineering (IREME), 12 (6), pp. 556-562.
https://doi.org/10.15866/ireme.v12i6.15034

R. Pippan, A. Hohenwarter, The importance of fracture toughness in ultrafine and nanocrystalline bulk materials, Materials Research Letters. Vol. 4, n 3, pp. 127–136, 2016.
https://doi.org/10.1080/21663831.2016.1166403

Y. Luo, H. P. Xie, L. Ren, R. Zhang, C. B. Li, C. Gao, Linear Elastic Fracture Mechanics Characterization of an Anisotropic Shale, Scientific Reports, Vol. 8, n 1, pp. 8505, 2018.
https://doi.org/10.1038/s41598-018-26846-y

D. E. Mouzakis, J. Karger-Kocsis, E. J. Moskala, Interrelation between energy partitioned work of fracture parameters and the crack tip opening displacement in amorphous polyester films. Journal of Materials Science Letters, Vol. 19, n. 18, pp. 1615-1619, 2000.
https://doi.org/10.1023/a:1006797522901

S. F. Ferdous, A. Adnan, Mode-I Fracture Toughness Prediction of Diamond at the Nanoscale, Journal of Nanomechanics and Micromechanics, Vol. 7, n 3, 04017010, 2017.
https://doi.org/10.1061/(asce)nm.2153-5477.0000130

E. Tanne, T. Li, B. Bourdin, J-J. Marigo, C. Maurini, Crack nucleation in variational phase-field models of brittle fracture, Journal of the Mechanics and Physics of Solids, Vol. 110, pp. 80-99, 2018.
https://doi.org/10.1016/j.jmps.2017.09.006

X. Zhang, C. Vignes, S. Sloan, D. Sheng, Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale. Computational Mechanics, Vol. 59, pp. 737-752, 2017.
https://doi.org/10.1007/s00466-017-1373-8

W.R. Tyson, J.C. Newman Jr, S. Xu, Characterization of stable ductile crack propagation by CTOA: Review of theory and applications, Fatigue and Fracture of Engineering Materials and Structures, Vol. 41, n 12, pp. 2421-2437, 2018.
https://doi.org/10.1111/ffe.12916

S. Xu, C. Bassindale, B.W. Williams, X. Wang, W.R. Tyson and K. Shibanuma, Comments on CTOA transferability in Crack tip opening angle during unstable ductile crack propagation of a high-pressure gas pipeline, Engineering Fracture Mechanics, Vol. 204, pp. 434–453, 2018.
https://doi.org/10.1016/j.engfracmech.2019.03.023

W.L.Khor, A CTOD equation based on the rigid rotational factor with the consideration of crack tip blunting due to strain hardening for SEN(B), Fatigue and Fracture of Engineering Materials and Structures, Vol. 42, n 7, pp. 1622-1630, 2019.
https://doi.org/10.1111/ffe.13005

M. B. Amara, G. Pluvinage, J. Capelle, Z. Azari, Crack Tip Opening Angle as a Fracture Resistance Parameter to Describe Ductile Crack Extension and Arrest in Steel Pipes under Service Pressure, Physical Mesomechanics, Vol. 18, n. 4, pp. 355–369, 2015.
https://doi.org/10.1134/s1029959915040086

D. M. Kulkarni, V. Chaudhari, R. Prakash, A. N. Kumar, Effect of thickness on fracture criterion in general yielding fracture mechanics, International Journal of Fracture, Vol. 151, pp. 187-198, 2008.
https://doi.org/10.1007/s10704-008-9253-z

L. C. S. Nunes, Crack-craze opening profiles near a crack tip in a polytetrafluoroethylene, Polymer Testing, Vol. 31, n. 3, pp. 375-383, 2012.
https://doi.org/10.1016/j.polymertesting.2011.12.002

X-K. Zhu, J. A. Joyce, Review of fracture toughness (G, K, J, CTOD,CTOA) testing and standardization, Engineering Fracture Mechanics, Vol. 85, pp. 1–46, 2012.
https://doi.org/10.1016/j.engfracmech.2012.02.001

P.-S. Lam, Y. Kim, Y.J. Chao, The non-constant CTOD/CTOA in stable crack extension under plane-strain conditions, Engineering Fracture Mechanics, Vol. 73, pp. 1070-1085, 2006.
https://doi.org/10.1016/j.engfracmech.2005.12.008

A. A. Wells. Application of fracture mechanics at and beyond general yielding. Br Weld J., Vol. 10, pp. 563–70, 1963.

M. Fan, Y.M. Zhang, Z.M. Xiao, The interface effect of a nano-inhomogeneity on thefracture behavior of a crackand the nearby edge dislocation, International Journal of Damage Mechanics, Vol. 26, n 3, pp. 480–497, 2017.
https://doi.org/10.1177/1056789516665453

Á. P. Vélez, A. B. Sánchez, M.M. Fernández, Z.F. Muñiz, Multivariate Analysis to Relate CTOD Values with Material Properties in Steel Welded Joints for the Offshore Wind Power Industry, Energies, Vol. 12, n 20, pp. 4001, 2019.
https://doi.org/10.3390/en12204001

G. M. Castelluccio, D.L. McDowell, Microstructure-sensitive small fatigue crack growth assessment: Effect of strain ratio, multiaxial strain state, and geometric discontinuities. Int. J. Fatigue Vol. 82, pp. 521–529, 2016.
https://doi.org/10.1016/j.ijfatigue.2015.09.007

H. Yuan, W. Zhang, J. Kim, Y. Liu, A nonlinear grain-based fatigue damage model for civil infrastructure under variable amplitude loads. Int. J. Fatigue, Vol. 104, pp. 389–396, 2017.
https://doi.org/10.1016/j.ijfatigue.2017.07.026

C.T. Kelly, J. R. White, Photo-degradation of polyethylene and polypropylene at slow strain-rate, Polymer Degradation and Stability, Vol. 56, n. 3, pp. 367-383, 1997.
https://doi.org/10.1016/s0141-3910(96)00205-4

S. Hashemi. Temperature dependence of work of fracture parameters in polybutylene terephthalate (PBT). Polymer Engineering and Science, Vol. 40, pp. 1435–1446, 2000.
https://doi.org/10.1002/pen.11273

T. Bárány, J. Karger-Kocsis, T. Czigány, Effect ofhygrothermal aging on the essential work of fractureresponse of amorphous poly(ethylene terephthalate)sheets, Polymer Degradation and Stability, Vol. 82, pp. 271–278, 2003.
https://doi.org/10.1016/s0141-3910(03)00221-0

A. Arkhireyeva, S. Hashemi, Effect of temperature onwork of fracture parameters in poly(ether-etherketone) (PEEK) film, Engineering Fracture Mechanics, Vol. 71, pp. 789–804, 2004.
https://doi.org/10.1016/s0013-7944(03)00010-9

S. Hashemi, D. Obrien, The Essential Work of Plane-stress Ductile Fracture of Poly(ether-ether ketone) thermoplastic, Journal of Material Sciences, Vol. 28, pp. 3977–3982, 1993.
https://doi.org/10.1007/bf00351217

Purnomo, P., Subri, M., Post-Yield Fracture Behavior of Zeolite-Reinforced High Density Polyethylene Annealed Composite, (2017) International Review of Mechanical Engineering (IREME), 11 (1), pp. 87-93.
https://doi.org/10.15866/ireme.v11i1.10542

Purnomo, M. Subri, P. H. Setyarini, Fracture Development and Deformation Behavior Of Zeolite-Filled High-Density Polyethylene Annealed Composites In The Plane Stress Fracture, FME Transactions, Vol. 46, n. 2, pp. 165-170, 2018.
https://doi.org/10.5937/fmet1802157z

M. H. Nazir, Z. A. Khan, A. Saeed, Experimental analysis and modelling of c-crack propagation in silicon nitride ball bearing element under rolling contact fatigue, Tribology International, Vol. 126, pp. 386-401, 2018.
https://doi.org/10.1016/j.triboint.2018.04.030

J. Rosler, H. Harders, M. Baker, Mechanical Behaviour of Engineering Materials Metals, Ceramics, Polymers, and Composites, Springer-Verlag Berlin Heidelberg, 2006.

J. Lemaitre, R. Desmorat, Engineering Damage Mechanics Ductile, Creep, Fatigue and Brittle Failures, Springer-Verlag Berlin Heidelberg, 2005.
https://doi.org/10.1002/zamm.200590044

M.E. Kassner, R. Ermagan, Power Law Breakdown in the Creep in Single-Phase Metals, Metals, Vol. 9, n 12, 1345, 2019.
https://doi.org/10.3390/met9121345

F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, N.a Pugno, Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair, Progress in Materials Science, Vol. 83, pp. 536–573, 2016.
https://doi.org/10.1016/j.pmatsci.2016.07.007

S. Gali, K.V. L. Subramaniam, Evaluation of Crack Propagation and Post-cracking Hinge-type Behavior in the Flexural Response of Steel Fiber Reinforced Concrete, International Journal of Concrete Structures and Materials, Vol. 11, pp. 365–375, 2017.
https://doi.org/10.1007/s40069-017-0197-4

A. Singh, H. L. Yadav, S. Kumar, Effect of Temperature on Fracture Parameters of Aluminum Alloy Al 6061: A Numerical Study, International information and engineering technology association, Vol. 43, n 2, pp. 115-118, 2019.
https://doi.org/10.18280/acsm.430208

A. Pineau, A.A. Benzerga, T. Pardoen, Failure of metals I: Brittle and ductile fracture, Acta Materialia, Vol. 107, pp. 424 – 483, 2016.
https://doi.org/10.1016/j.actamat.2015.12.034

P. Shanthraj, B. Svendsen, L. Sharma, F. Roters, D. Raabe, Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture, Journal of the Mechanics and Physics of Solids, Vol. 99, pp. 19–34, 2017.
https://doi.org/10.1016/j.jmps.2016.10.012

D. F. O. Silva, R. D. S. G. Campilho, F. J. G. Silva, U. T. F. Carvalho, Application a direct/cohesive zone method for the evaluation of scarf adhesive joints, Applied Adhesion Science, Vol. 6, n 13, 2018.
https://doi.org/10.1186/s40563-018-0115-2


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize