Open Access Open Access  Restricted Access Subscription or Fee Access

Comparison of Mechanical Characteristics of Conventional and Underwater Friction Stir Welding of AA 6063 Pipe Joints


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v14i1.17483

Abstract


Underwater friction stir welding has attained a wide popularity nowadays. This innovative process is a variant of the friction stir welding process in which the specimen and the specimen-tool interface are submerged completely inside the water. Even though the heat dissipated in a friction stir welding process is proved to be comparatively less than arc welding process, the prime intention to investigate underwater friction stir welding process by the research community is to reduce the heat generated and thereby anticipated to have enhanced mechanical characteristic weld joint. Two major drawbacks of commercializing the underwater friction stir welding process are complexity as a result of weld path and fixture design. Therefore, in this research, underwater friction stir welding and traditional friction stir welding are performed on AA 6063 pipe joints with unique developed fixtures. The fixtures are designed and fabricated for holding the two pipes firmly. Welding parameters are established initially by conducting several trials for obtaining quality welds. A very rare literature on underwater friction stir welding of pipes is the motivation to investigate its adaptability and mechanical characteristics. The results prove that there is an evident depreciation in the tensile strength and hardness in the joints welded using both processes compared to the base material. However, underwater friction stir welding has exhibited a high tensile strength of 218 MPa and nugget zone hardness of 83 VHN compared to the traditional process that has 201 MPa and 65 VHN respectively. Quality flawless welds produced indicate their suitability of underwater friction stir process for welding pipes.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


AA 6063; Friction Stir Welding (FSW); Hardness; Tensile Strength; Underwater Friction Stir Welding (UFSW)

Full Text:

PDF


References


I. Sabry, A. M. El-Kassas, A-H. I. Mourad, D. T. Thekkuden, and J. Abu Qudeiri, ‘Friction Stir Welding of T-Joints: Experimental and Statistical Analysis’, J. Manuf. Mater. Process., vol. 3, no. 2, p. 38, 2019.
https://doi.org/10.3390/jmmp3020038

M. A. Wahid and A. N. Siddiquee, Review on underwater friction stir welding: A variant of friction stir welding with great potential of improving joint properties, Trans. Nonferrous Met. Soc. China, vol. 28, no. 2, pp. 193–219, 2018.
https://doi.org/10.1016/s1003-6326(18)64653-9

El-Sayed, M., Effect of Welding Conditions on the Mechanical Properties of Friction Stir Welded 1050 Aluminum Alloy, (2015) International Review of Mechanical Engineering (IREME), 9 (3), pp. 252-256.
https://doi.org/10.15866/ireme.v9i3.5653

Vijayan, D., Seshagiri Rao, V., A Parametric Optimization of FSW Process Using RSM Based Grey Relational Analysis Approach, (2014) International Review of Mechanical Engineering (IREME), 8 (2), pp. 328-337.

S. Shanavas, J. Edwin Raja Dhas, and N. Murugan, Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding, Int. J. Adv. Manuf. Technol., vol. 95, no. 9–12, pp. 4535–4546, 2018.
https://doi.org/10.1007/s00170-017-1492-6

I. Sabry, A-H. I. Mourad, and D. T. Thekkuden, Optimization of metal inert gas-welded aluminium 6061 pipe parameters using analysis of variance and grey relational analysis, SN Appl. Sci., vol. 2, no. 2, p. 175, 2020.
https://doi.org/10.1007/s42452-020-1943-9

D. T. Thekkuden and A-H. I. Mourad, Investigation of feed-forward back propagation ANN using voltage signals for the early prediction of the welding defect, SN Appl. Sci., vol. 1, no. 12, p. 1615, 2019.
https://doi.org/10.1007/s42452-019-1660-4

A-H. I. Mourad, A. Khourshid, and T. Sharef, Gas tungsten arc and laser beam welding processes effects on duplex stainless steel 2205 properties, Mater. Sci. Eng. A, vol. 549, pp. 105–113, 2012.
https://doi.org/10.1016/j.msea.2012.04.012

D. T. Thekkuden, A. Santhakumari, A. Sumesh, A-H. I. Mourad, and K. Rameshkumar, Instant detection of porosity in gas metal arc welding by using probability density distribution and control chart, Int. J. Adv. Manuf. Technol., vol. 95, no. 9–12, pp. 4583–4606, 2018.
https://doi.org/10.1007/s00170-017-1484-6

A. Sumesh, D. T. Thekkuden, B. B. Nair, K. Rameshkumar, and K. Mohandas, ‘Acoustic signature based weld quality monitoring for SMAW Process using Data Mining Algorithms’, Appl. Mech. Mater., vol. 813–814, pp. 1104–1113, 2015.
https://doi.org/10.4028/www.scientific.net/amm.813-814.1104

D. T. Thekkuden, A-H. I. Mourad, J. V. Christy, and A. H. Idrisi, Assessment of Weld Quality Using Control Chart and Frequency Domain Analysis, in ASME 2018 Pressure Vessels and Piping Conference, 2018, p. V06BT06A004-V06BT06A004.
https://doi.org/10.1115/pvp2018-85091

A-H. I. Mourad, A. El-Domiaty, and Y. J. Chao, Fracture toughness prediction of low alloy steel as a function of specimen notch root radius and size constraints, Eng. Fract. Mech., vol. 103, pp. 79–93, 2013.
https://doi.org/10.1016/j.engfracmech.2012.05.010

Y. A. Alzafin, A-H. I. Mourad, M. A. Zour, and O. A. Abuzeid, Stress corrosion cracking of Ni-resist ductile iron used in manufacturing brine circulating pumps of desalination plants, Eng. Fail. Anal., vol. 16, no. 3, pp. 733–739, 2009.
https://doi.org/10.1016/j.engfailanal.2008.06.013

A. I. Aljoboury, A-H. I. Mourad, A. Alawar, M. Abou Zour, and O. A. Abuzeid, Stress corrosion cracking of stainless steels recommended for building brine recirculation pumps, Eng. Fail. Anal., vol. 17, no. 6, pp. 1337–1344, 2010.
https://doi.org/10.1016/j.engfailanal.2010.03.008

A-H. I. Mourad, A. Abu-Assi, F. M. Haggag, and Y. J. Chao, Novel Technique for Normalizing Load–Displacement Curves in Fracture Testing, Mater. Perform. Charact., vol. 3, no. 3, pp. 1–20, 2014.
https://doi.org/10.1520/mpc20130084

A-H. I. Mourad, J. Altarawneha, A. E. Domiaty, Y. J. Chao, and F. M. Haggag, Fracture Toughness Measurements From Circumferentially-Notched Pipes Tests, Mater. Perform. Charact., vol. 3, no. 3, pp. 305–321, 2014.
https://doi.org/10.1520/mpc20130083

A.-H. I. Mourad, J. Altarawneh, A. El Domiaty, and Y. J. Chao, Fracture toughness determined from full-scale pipe, in ASME 2012 Pressure Vessels and Piping Conference, 2012, pp. 125–130.
https://doi.org/10.1115/pvp2012-78783

H. J. Zhang, H. J. Liu, and L. Yu, Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints, Mater. Des., vol. 32, no. 8–9, pp. 4402–4407, 2011.
https://doi.org/10.1016/j.matdes.2011.03.073

H. Papahn, P. Bahemmat, M. Haghpanahi, and C. Sommitsch, Study on governing parameters of thermal history during underwater friction stir welding, Int. J. Adv. Manuf. Technol., vol. 78, no. 5–8, pp. 1101–1111, 2015.
https://doi.org/10.1007/s00170-014-6615-8

H. J. Liu, H. J. Zhang, and L. Yu, Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy, Mater. Des., vol. 32, no. 3, pp. 1548–1553, 2011.
https://doi.org/10.1016/j.matdes.2010.09.032

S. S. Sabari, S. Malarvizhi, and V. Balasubramanian, Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir welded AA2519-T87 aluminium alloy joints, J. Mater. Process. Technol., vol. 237, pp. 286–300, 2016.
https://doi.org/10.1016/j.jmatprotec.2016.06.015

El-Kassas, A., Sabry, I., Mourad, A., Thekkuden, D., Characteristics of Potential Sources - Vertical Force, Torque and Current on Penetration Depth for Quality Assessment in Friction Stir Welding of AA 6061 Pipes, (2019) International Review of Aerospace Engineering (IREASE), 12 (4), pp. 195-204.
https://doi.org/10.15866/irease.v12i4.16362

Krishnan, M., Krishnaswamy, M., Optimal Design to Improve the Tensile Strength of Friction Stir Welded Dissimilar Aluminium Alloys, (2013) International Review on Modelling and Simulations (IREMOS), 6 (6), pp. 1948-1954.

Youssif, M., El-Sayed, M., Khourshid, A., Influence of Critical Process Parameters on the Quality of Friction Stir Welded Nylon 6, (2016) International Review of Mechanical Engineering (IREME), 10 (7), pp. 501-507.
https://doi.org/10.15866/ireme.v10i7.9690

S. K. Maiti and A-H. I. Mourad, Criterion for mixed mode stable crack growth—I. Three point bend geometry, Eng. Fract. Mech., vol. 52, no. 2, pp. 321–347, 1995.
https://doi.org/10.1016/0013-7944(95)00026-r

A-H. I. Mourad and S. K. Maiti, Influence of state of stress on mixed mode stable crack growth through D16AT aluminium alloy, Int. J. Fract., vol. 72, no. 3, pp. 241–258, 1995.
https://doi.org/10.1007/bf00037313

A-H. I. Mourad and S. K. Maiti, Mode II stable crack growth, Fatigue Fract. Eng. Mater. Struct., vol. 19, no. 1, pp. 75–84, 1996.

S. K. Maiti and A-H. I. Mourad, Criterion for mixed mode stable crack growth—II. Compact tension geometry with and without stiffener, Eng. Fract. Mech., vol. 52, no. 2, pp. 349–378, 1995.
https://doi.org/10.1016/0013-7944(95)00027-s

S. K. Maiti, G. K. Kishore, and A-H. I. Mourad, Bilinear CTOD/CTOA scheme for characterisation of large range mode I and mixed mode stable crack growth through AISI 4340 steel, Nucl. Eng. Des., vol. 238, no. 12, pp. 3175–3185, 2008.
https://doi.org/10.1016/j.nucengdes.2008.06.008

S. K. Maiti, S. Namdeo, and A-H. I. Mourad, A scheme for finite element analysis of mode I and mixed mode stable crack growth and a case study with AISI 4340 steel, Nucl. Eng. Des., vol. 238, no. 4, pp. 787–800, 2008.
https://doi.org/10.1016/j.nucengdes.2007.02.004

A-H. I. Mourad, M. J. Alghafri, O. A. A. Zeid, and S. K. Maiti, Experimental investigation on ductile stable crack growth emanating from wire-cut notch in AISI 4340 steel, Nucl. Eng. Des., vol. 235, no. 6, pp. 637–647, 2005.
https://doi.org/10.1016/j.nucengdes.2004.10.005

T. S. Bloodworth, On the immersed friction stir welding of AA6061-T6: a metallurgic and mechanical comparison to friction stir welding, Vanderbilt University, 2009.
https://doi.org/10.1115/imece2009-13193

H.-J. Liu, H. Zhang, Y. Huang, and Y. U. Lei, Mechanical properties of underwater friction stir welded 2219 aluminum alloy, Trans. Nonferrous Met. Soc. China, vol. 20, no. 8, pp. 1387–1391, 2010.
https://doi.org/10.1016/s1003-6326(09)60309-5

Y. Zhao, Q. Wang, H. Chen, and K. Yan, Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding, Mater. Des., vol. 56, pp. 725–730, 2014.
https://doi.org/10.1016/j.matdes.2013.11.071

D. Sakurada, K. Katoh, and H. Tokisue, Underwater friction welding of 6061 aluminum alloy, Journal-Japan Inst. Light Met., vol. 52, no. 1, pp. 2–6, 2002.
https://doi.org/10.2464/jilm.52.2

A-H. I. Mourad, M. Allam, and A. El Domiaty, ‘Study on the mechanical behavior of aluminum alloy 5083 friction stir welded joint’, in ASME 2014 Pressure Vessels and Piping Conference, 2014, p. V06AT06A014-V06AT06A014.
https://doi.org/10.1115/pvp2014-28556

D. C. Hofmann and K. S. Vecchio, Thermal history analysis of friction stir processed and submerged friction stir processed aluminum, Mater. Sci. Eng. A, vol. 465, no. 1–2, pp. 165–175, 2007.
https://doi.org/10.1016/j.msea.2007.02.056

H. J. Liu, H. J. Zhang, and L. Yu, Homogeneity of mechanical properties of underwater friction stir welded 2219-T6 aluminum alloy, J. Mater. Eng. Perform., vol. 20, no. 8, pp. 1419–1422, 2011.
https://doi.org/10.1007/s11665-010-9787-x

H. Papahn, P. Bahemmat, and M. Haghpanahi, Effect of cooling media on residual stresses induced by a solid-state welding: underwater FSW, Int. J. Adv. Manuf. Technol., vol. 83, no. 5–8, pp. 1003–1012, 2016.
https://doi.org/10.1007/s00170-015-7653-6

A-H. I. Mourad, K. H. Harib, and A. El-Domiaty, Fracture Behavior of Friction Stir Spot Welded Joint’, in ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, 2010, pp. 205-215.
https://doi.org/10.1115/pvp2010-25986

R. P. Mahto, C. Gupta, M. Kinjawadekar, A. Meena, and S. K. Pal, Weldability of AA6061-T6 and AISI 304 by underwater friction stir welding, J. Manuf. Process., vol. 38, pp. 370–386, 2019.
https://doi.org/10.1016/j.jmapro.2019.01.028

R. Rouzbehani, A. H. Kokabi, H. Sabet, M. Paidar, and O. O. Ojo, Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy, J. Mater. Process. Technol., vol. 262, pp. 239–256, 2018.
https://doi.org/10.1016/j.jmatprotec.2018.06.033

F. Heirani, A. Abbasi, and M. Ardestani, ‘Effects of processing parameters on microstructure and mechanical behaviors of underwater friction stir welding of Al5083 alloy, J. Manuf. Process., vol. 25, pp. 77–84, 2017.
https://doi.org/10.1016/j.jmapro.2016.11.002

Q. Wang, Z. Zhao, Y. Zhao, K. Yan, and H. Zhang, The adjustment strategy of welding parameters for spray formed 7055 aluminum alloy underwater friction stir welding joint, Mater. Des., vol. 88, pp. 1366–1376, 2015.
https://doi.org/10.1016/j.matdes.2015.09.038

Q. Wang, Z. Zhao, Y. Zhao, K. Yan, C. Liu, and H. Zhang, The strengthening mechanism of spray forming Al-Zn-Mg-Cu alloy by underwater friction stir welding, Mater. Des., vol. 102, pp. 91–99, 2016.
https://doi.org/10.1016/j.matdes.2016.04.036

Y. B. Tan et al., A study on microstructure and mechanical properties of AA 3003 aluminum alloy joints by underwater friction stir welding, Mater. Charact., vol. 127, pp. 41–52, 2017.
https://doi.org/10.1016/j.matchar.2017.01.039

V. Ebrahimzadeh, M. Paidar, M. A. Safarkhanian, and O. O. Ojo, Orbital friction stir lap welding of AA5456-H321/AA5456-O aluminum alloys under varied parameters, Int. J. Adv. Manuf. Technol., vol. 96, no. 1-4, pp. 1237-1254, 2018.
https://doi.org/10.1007/s00170-018-1679-5

H. J. Zhang, H. J. Liu, and L. Yu, Effect of water cooling on the performances of friction stir welding heat-affected zone, J. Mater. Eng. Perform., vol. 21, no. 7, pp. 1182–1187, 2012.
https://doi.org/10.1007/s11665-011-0060-8


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize