Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis and Characterization of Monometallic Cobalt Catalyst Supported on Kaolin for the Production of Carbon Nanotubes


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v13i8.17019

Abstract


This study focuses on the synthesis and the optimization of a monometallic cobalt catalyst on kaolin as support for carbon nanotube production using the catalytic chemical vapour deposition method. The catalyst was prepared by a wet impregnation method. Cobalt has been dispersed onto kaolin support and the catalyst production parameters such as the mass of support, the stirring speed, the drying temperature and the drying time have been optimized using full factorial experimental design. The highest catalyst yield of 72.5% has been obtained at an operating temperature of 110 °C, 7 rpm stirring speed, 7 h drying time, and mass of support of 8 g. A statistical analysis has showed that the mass of the catalyst support had the most significant effect on the yield. The as-produced catalyst has been dried at 110 °C and 120 °C for 5 h to 7 h and calcined at 500 °C for 14 h with an the optimum percentage yield obtained of 72.5 %. The catalyst had a specific surface area of 269.5 m2/g and has been thermally stable up to 1000 °C. The highest yield of carbon nanotube has been obtained at a production temperature of 850 °C. The analyses of the carbon nanotube have indicated that it had an average diameter of 47 nm; specific surface area, pore volume and pore size have been 454.6 m2/g, 0.1573 cm3/g, and 33.35 nm respectively. Thermo-gravimetric analysis has indicated that the carbon nanotube produced has been stable up to 700 °C. Fourier transform infrared spectroscopy analysis has revealed the presence of functional groups such as alkynes. The various analyses conducted have showed that kaolin is suitable for catalyst synthesis for carbon nanotube growth.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Kaolin; Carbon Nanotube; Cobalt; Characterisation; Catalytic Chemical Vapour Deposition

Full Text:

PDF


References


Z. Y. He, X. W. Wei & Y. Q. Wei, (2017). Antimicrobial Nanoarchitectonics: From Synthesis to Applications ed. by A.M. Grumezescu (Elsevier, Amsterdam, 2017), pp. 167-194.

G. A. Adewumi, F. Inambao, A. Eloka-Eboka, N. Revaprasadu, (2018). Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth. Journal of Electronic Materials, 47(7), 3788-3794.
https://doi.org/10.1007/s11664-018-6248-z

C. Xu, Q. Liu, H. Liu, C. Zhang, W. Shao, & A. Gu (2016). Toxicological assessment of multi-walled carbon nanotubes in vitro: Potential mitochondria effects on male reproductive cells, Oncotarget, 7(26): 39270-39278.
https://doi.org/10.18632/oncotarget.9689

Q. Xu, W. Li, L. Ding, W. Yang, H. Xiao, & W-J. Ong (2019). Function-driven engineering of 1D carbon nanotubes of 0D carbon dots: mechanism, properties and application, Nanoscale, 11, 1475-1504.
https://doi.org/10.1039/c8nr08738e

S.A. Pande, B. Pandit & B.R. Sankapal (2018). Facile chemical route for multi-walled carbon nanotube/mercury sulfide nanocomposite: High performance supercapacitive electrode, Colloid Interface Science, Vol. 514, pp. 740-749.
https://doi.org/10.1016/j.jcis.2017.12.068

D. L. Ramasamy, V. Puhakka, B. Doshi, S. Iftekha, & M. Sillaampaa (2019). Fabrication of carbon nanotubes reinforced silica composites with improved rare earth elements adsorption performance, Chemical Engineering Journal, 265, 291-304.
https://doi.org/10.1016/j.cej.2019.02.057

S. Iijima (1991). Helical microtubules of graphitic carbon. Nature, Vol. 354, n 6348, pp. 56, 1991.
https://doi.org/10.1038/354056a0

D. Das, B. F. Leo, & F. Murphy (2018). The toxic truth about carbon nanotubes in water purification: a perspective view, Nanoscale Res Lett 13: 183.
https://doi.org/10.1186/s11671-018-2589-z

Q. Guo, X. Shen, Y. Li, & S. Xu (2017). Carbon nanotubes-based drug delivery to cancer and brain, Current Med Sci Vol 37 n 5 pp. 635-641.

R. Rahman, Z. Najaf, A, Mehmood, S. Bilal, A.H.A. Shah, S.A. Mian & G. Ali (2019). An overview of the recent progress in the synthesis and applications of carbon nanotube, Journal of Carbon Research, 5(1), 3.
https://doi.org/10.3390/c5010003

A.H.Sari, A. Khazali, & S.S. Parhizgar (2018). Synthesis and characterization of long carbon nanotube electrical acr discharge in deionized water and NaCl solution, Int Nano Lett, 8(1), 19-23.
https://doi.org/10.1007/s40089-018-0227-5

Yao Wang, Fei Wei, Guohua Luo, Hao Yu, Guangsheng Gu, The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor, Chemical Physics Letters, Volume 364, Issues 5–6, 2002, Pages 568-572, ISSN 0009-2614.
https://doi.org/10.1016/s0009-2614(02)01384-2

R. Das, Z, Shahnavaz, E. Ali, M. M. Islam, & S. B. AbdHamid (2016). Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Res Lett, 11: 510.
https://doi.org/10.1186/s11671-016-1730-0

doi: http://doi.org/10.1186/s11671-016-1730-0

K. O. Ukoba, A. C Eloka-Eboka, F. L. Inambao (2018). Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renewable and Sustainable Energy Reviews, 82, 2900-2915.
https://doi.org/10.1016/j.rser.2017.10.041

G. L. Esquenazi, B. Brinson, & A. R. Barron, Catalytic growth of carbon nanotubes by direct liquid injection CVD using the nanocluster, J. Carbon Res, 2018, 4, 17.
https://doi.org/10.3390/c4010017

X. Yang, X. Li, & L. Rong (2017). A clean hydroprocessing of jatropha oin into biofuels over a high performance Ni-HPW/CNT catalyst, Nano, 12(12): 1750142.
https://doi.org/10.1142/s1793292017501429

K. Allaedini, S. M. Tasirin, P. Aminayi, Z. Taakob, & M. Z. MoerTalib (2016). Carbon nanotubes via different catalysts and the important factors that affect their production: a review, Int J. Nano Dimens, 7(3): 186-200.

B. Kumanek, & D. Janas (2019). Thermal conductivity of carbon nanotube networks: a review, J. Mater Sci, 54: 7397-7427.
https://doi.org/10.1007/s10853-019-03368-0

Z. X., Xu, J.D. Lin, V.A.I. Roy, Y. Ou & D.W. Liao, Mater. Sci. Eng. B,Vol. 123, n 2, pp. 102-106, 2005.

A. Chatterjee, M. Sharon, R. Banerjee & M. Neumann-Spallart, Electrochim. Acta. Vol. 48, n 23, pp. 3439-3446, 2003.
https://doi.org/10.1016/s0013-4686(03)00427-4

S. D. Mhlanga, & N.J. Coville, Diamond Relat. Mater.,Vol. 17, n 7-10, pp. 1489-1493, 2008.

R. Xiang, S. Murayama (2018). Revisiting behaviours of monometallic catalysts in chemical vapour deposition synthesis of SWCNTs, Royal Society Open Science, 5.

N. Berahim, W.J. Basiryun, B.F. Leo, & M. R. Johan (2018). Synthesis of bimetallic gold-silver nanoparticles for the catalytic reduction of 4-nitrophenol to 4-aminophenol, Catalysts, 18, 412.
https://doi.org/10.3390/catal8100412

Y. Ma, N. Yang, & X. Jiang (2016). One-dimensional carbon nanostructures: low-temperature chemical vapour synthesis and application, Carbon Nanopartticles and Nanostructures, 47-76.
https://doi.org/10.1007/978-3-319-28782-9_2

F. Shahi, M. Akbarzadeh Pasha, A.A. Hosseini, Z.S. Arabshahi (2015). Synthesis of multi-walled carbon nanotubes using monometallic and bimetallic combinations of Fe, Co and Ni catalysts supported on nanometric SiC via TCVD. JNS 5(2015), 87-95.

Y. Oka, K. Ohnishi, K. Asami, M. Suyama, Y. Nishimura, T. Nashimoto, K. Yonezawa, T. Nakamura, & M. Yaksuzuka (2017). Dispersion of carbon nanotubes into water without dispersant using cavitation bubbles plasma, Vacuum, Vol 136, 209-213.
https://doi.org/10.1016/j.vacuum.2016.07.026

T. Liu, Z. Xiao, C. Zhang, & B. Wang. Preparative ultracentrifuge method for characterisation of carbon nanotube dispersions, Journal, of Physical Chemistry, 122, 19193-19202, 2008.
https://doi.org/10.1021/jp804720j

T. J. Simmons, J. Bult, D. P. Hashim, R. J. Linhardt, & P. M. Ajayan. Non-covalent functionalisation as an alternative to oxidative, acid treatment of single wall carbon nanotubes with applications for polymer nanocomposites, ACS Nanotechnology, 3(4), 865-870, 2009.
https://doi.org/10.1021/nn800860m

M. R. Manisah, & Y. Kamal. Carbon nanotubes-polymer nanocomposites, Australian Journal of Basic and Applied Sciences, 8(4): 471-475, 2014.

A. Yahyazadah & B. Khoshandam. Carbon nanotube synthesis via the catalytic chemical vapour deposition of methane in the presence of iron, molybdenum and iron-molybdenum alloy thin layer catalyst, Results in Physics, 7, 3826-3837, 2017.
https://doi.org/10.1016/j.rinp.2017.10.001

A. S. Abdulkareem, B. Suleiman, A.T. Abdulazeez, I. Kariim, O. K. Abubakre & A. S. Afolabi, Proceedings of the world conference on engineering and computer science (2016), Vol. II, October 19-21, 2016, San Francisco, USA.

A. H. Kababji, B. Joseph, & J. T. Wolan (2009). Silica-supported cobalt catalysts for Fischer–Tropsch synthesis: effects of calcination temperature and support surface area on cobalt silicate formation, Catalysis letters, 130(1-2), 72-78.
https://doi.org/10.1007/s10562-009-9903-4

A. F. Al-Fatesh & J. Saudi, Chem. Soc., Vol. 16, pp. 55-61, 2010.

M. Baerns, (Ed.). (2013), Basic principles in applied catalysis (Vol. 75). Springer Science & Business Media.

A. Oyewemi, A. S. Abdulkareem, J. O. Tijani, M. T. Bankole, O. K. Abubakre, A. S. Afolabi, & W. D. Roos, Controlled syntheses of multi-walled carbon nanotubes from bimetallic Fe-Co catalyst supported on kaolin by chemical vapour deposition method, Arabian Journal for Science and Engineering, Vol 44 n 6 pp 5411-5432, 2019.
https://doi.org/10.1007/s13369-018-03696-4

H. Kurita, H. Kwon, M. Estili & A. Kawasaki, Multi-Walled Carbon Nanotube Aluminum Matrix Composites Prepared by Combination of Hetero-Agglomeration Method, Spark Plasma Sintering and Hot Extrusion, Mater. Trans., Vol. 52, n 20, pp. 1960-1965, 2011.
https://doi.org/10.2320/matertrans.m2011146

G.A. Mohammed, M.T. Bankole, A.S. Abdulkareem, S.S. Ochigbo, A.S. Afolabi & O.K. Abubakre, On Security and Environmental Challenges: The Engineering Perspectives: Proc. 1st International Engineering Conference Proceedings, Minna, 2015, pp. 314-320.

Regalbuto, J., 2016. Catalyst preparation: science and engineering. CRC Press.

D.V. Quang, & N.H. Chau, (2013). The effect of hydrothermal treatment on silver nanoparticles stabilized by chitosan and its possible application to produce mesoporous silver powder, Journal of Powder Technology, pp. 1-6.
https://doi.org/10.1155/2013/281639

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, & R. P. Van Duyne. Surface enhanced Raman spectroscopy. New materials, concepts, characterization tools, and applications. Faraday discussions, 132, pp. 9-26. 2006.
https://doi.org/10.1039/b513431p

S.D. Mhlanga, K.C. Mondal, R. Carter, M.J. Witcomb & N.J. Coville,The Effect of Synthesis Parameters on the Catalytic Synthesis of Multiwalled Carbon Nanotubes using Fe-Co/CaCO3 CatalystsS. Afr. J. Chem.,Vol. 62, pp. 67-76, 2009.

J. A. Gomez, A. Marquez, A. Perez & A. Duarte-Moller, Advances Mater. Sci. Eng. (2012).

R. K. AL-Rub, A. I. Ashour & B. M. Tyson, (2012). On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites, Construction and Building Materials, 35, 647-655.
https://doi.org/10.1016/j.conbuildmat.2012.04.086

V. V. Mody, R. Siwale, A. Singh, & H. R. Mody, (2010). Introduction to metallic nanoparticles, Journal of Pharmacy and Bioallied Sciences, 2(4), 282.
https://doi.org/10.4103/0975-7406.72127

M. Kumar, Y. Ando. Chemical Vapour Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, Journal of Nanoscience and Nanotechnology, Vol. 10, 3739–3758. 2010.
https://doi.org/10.1166/jnn.2010.2939

Najari, M., Makni, W., Ben Ayed, H., Samet, H., Enhanced Analytical Model of a Schottky Barrier CNTFET, (2016) International Review on Modelling and Simulations (IREMOS), 9 (2), pp. 49-55.
https://doi.org/10.15866/iremos.v9i2.6214


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize