Open Access Open Access  Restricted Access Subscription or Fee Access

Condensation Heat Transfer Characteristics of Hydrofluoroolefin Refrigerant R1234YF as an R134a Alternative


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i10.16096

Abstract


This study conducts an experimental investigation to determine the condensation heat transfer characteristics of hydrofluoroolefin R1234yf and R134a on horizontal smooth and finned tubes. The experiments are conducted at a saturation temperature of 39°C with variable water cooling temperatures and velocities. Additionally, the effects of different fin geometries are investigated. The predicted condensation heat transfer coefficients on the smooth tube are lower than the experimental coefficients by 2.8−14.2% for R134a and 13.8−20.7% forR1234yf. The experimental results demonstrate that the heat flux increases with a decrease in the fin height or an increase in the fin pitch and thickness. Additionally, the heat flux increases as the water velocity increases or the water inlet temperature decreases. The results also show that the tube with the largest fin pitch, largest fin thickness, and smallest fin height provides the highest condensation heat flux. The condensation heat transfer coefficients of R1234yf are slightly higher than those of R134a for all of the experiments. Thus, this study concludes that R1234yf is a potentially environmentally-friendly alternative to R134a for condensation heat transfer applications.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


R134a Condensation; R1234yf Condensation; R134a Alternatives; R1234yf; Horizontal Finned Tubes

Full Text:

PDF


References


Jha, R., Haribhakta, V., Kolte, A., Shekhadar, S., Tengale, S., Tare, S., Design and Simulation of Condensing Heat Exchanger, (2017) International Review of Mechanical Engineering (IREME), 11 (7), pp. 473-480.
http://dx.doi.org/10.15866/ireme.v11i7.12879

J. F. Seara, J. U. Francisco, J. Sieres, Research on the Condensation of the Ammonia–Water Mixture on a Horizontal Smooth Tube, International Journal of Refrigeration, Vol. 310, pp. 304-314, 2008.
http://dx.doi.org/10.1016/j.ijrefrig.2007.05.004

D. Jung, S. Chaea, D. Baea, S. Ohob, Condensation Heat Transfer Coefficients of Flammable Refrigerant, International Journal of Refrigeration, Vol. 27, pp. 314-317, 2004.
http://dx.doi.org/10.1016/j.ijrefrig.2003.09.006

R. Kumar, H. K. Varma, B. Mohanty, K. N. Agrawal, Augmentation of Outside Tube Heat Transfer Coefficient during Condensation of Steam over Horizontal Copper Tubes, International Communications of Heat and Mass Transfer, Vol. 25(I), pp.81-91, 1998.
http://dx.doi.org/10.1016/s0735-1933(97)00139-5

R. Kumar, H. K. Varma, B. Mohanty, K. N. Agrawal, Prediction of Heat Transfer Coefficient during Condensation of Water and R-134a on Single Horizontal Integral-Fin Tubes, International Journal of Refrigeration, Vol.25, pp.11-126, 2002.
http://dx.doi.org/10.1016/s0140-7007(00)00094-3

R. Kumar, A. Gupta, S. Vishvakarma, Condensation of R134a Vapor over Single Horizontal Integral-Fin Tubes: Effect of Fin Height, International Journal of Refrigeration, Vol. 28, pp. 428-435, 2005.
http://dx.doi.org/10.1016/j.ijrefrig.2004.04.007

A. Briggs, J. W. Rose, Effect of Fin Efficiency on a Model for Condensation Heat Transfer on a Horizontal, Integral-Fin Tube, International Journal of Heat and Mass Transfer, Vol. 37(1),pp. 457-463, 1995.
http://dx.doi.org/10.1016/0017-9310(94)90045-0

A. Reif, A. Büchner, S. Rehfeldt, H. Klein, Outer Heat Transfer Coefficient for Condensation of Pure Components on Single Horizontal Low-Finned Tubes, Heat and Mass Transfer, 2007.
http://dx.doi.org/10.1007/s00231-017-2184-3

Y. T. Kang, H. Hong, Y. S. Lee, Experimental Correlation of Falling Film Condensation on Enhanced Tubes with HFC134a; Low-Fin and Turbo-C Tubes, International Journal of Refrigeration, Vol. 30, pp.805-811, 2007.
http://dx.doi.org/10.1016/j.ijrefrig.2006.12.003

A. Büchner, A. Reif, S. Rehfeldt, H. Klein, Condensation of Binary Mixtures on Horizontal Tubes, Heat and Mass Transfer, 2017.
http://dx.doi.org/10.1007/s00231-017-2250-x

T. Karlsson,L. Vamling, Surprising effects of combined vapor and liquid mass transfer resistances when condensing a mixture outside tube banks, Int J Heat and Mass Tran 48 (2005) 403-412.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.06.041

H. Honda, H. Takamatsu, N. Takada, Condensation of HCFC123 in Bundles of Horizontal Finned Tubes: Effects of Finned Geometry and Tube Arrangement, International Journal of Refrigeration, Vol. 19, pp.1-9, 1996.
http://dx.doi.org/10.1016/0140-7007(95)00071-2

H. Honda, H. Takamatsu, N. Takada, Condensation of Downward-Flowing Zeotropic Mixture HCFC-123/HFC-134a on a Staggered Bundle of Horizontal Low-Finned Tubes, Journal of Heat Transfer, Vol. 121(2), pp. 405-412, 1999.
http://dx.doi.org/10.1115/1.2825993

H. Honda, H. Takamatsu, N. Takada, J.S. Kim, K.Usami, Condensation of Downward-Flowing HFC134a in a Staggered Bundle of Horizontal Finned Tubes Effect of Fin Geometry, International Journal of Refrigeration, Vol. 25, pp. 3-10, 2002.
http://dx.doi.org/10.1016/s0140-7007(01)00023-8

S. Brown, C. Zilio, R. Brignoli, A. Cavallini, Thermophysical Properties and Heat Transfer and Pressure Drop Performance Potentials of Hydrofluoro-Olefins, Hydrochlorofluoro-Olefins, and their blends, HVAC&R Research, Vol. 20(2), pp.203-220, 2014.
http://dx.doi.org/10.1080/10789669.2013.854146

Airedale, Turbo Chill Free Cool, 2015.
http://dx.doi.org/10.1093/ww/9780199540884.013.u183084

GEA Consulting, MHI Chooses HFO-1233zd(E) for New Centrifugal Chillers, 2015.

ECN, R&D on Industrial Heat Pumps, 2014.

D. Del Col, D. Torresin, A. Cavallini, Heat Transfer and Pressure Drop during Condensation of the Low GWP Refrigerant R1234yf, International Journal of Refrigeration, Vol. 33, pp.1307-1318, 2010.
http://dx.doi.org/10.1016/j.ijrefrig.2010.07.020

K. Park, D. G. Kang, D. Jung, Condensation Heat Transfer Coefficients of R1234yf on Plain, Low Fin, and Turbo-C Tubes, International Journal of Refrigeration, Vol.34, pp.317-321, 2011.
http://dx.doi.org/10.1016/j.ijrefrig.2010.06.010

K. Park, D. G. Kang, D. Jung, Critical Heat Flux: Performance of R1234yf, R1234ze and R134a in an Aluminum Multi-minichannel Heat Sink at High Saturation Temperatures, International Journal of Thermal Science, Vol. 106, pp.1-16, 2016.
http://dx.doi.org/10.1016/j.ijthermalsci.2016.03.011

Ibrahim, T. A., Hassan, M. A. M., Condensation Heat Transfer Characteristics of R22, R134a, R410A and R407C on Single Horizontal Plain and Finned Tubes, (2013) International Review of Mechanical Engineering (IREME), 7 (4), pp. 664-672.

F. P. Incropera, P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 2003.
http://dx.doi.org/10.1080/01457639208939766

R. Moffat, Describing the Uncertainties in Experimental Results, Experimental Thermal and Fluid Science, Elsevier Science Pub. Co. Inc, New York, 1988.
http://dx.doi.org/10.1016/0894-1777(88)90043-x

C. Jung, B. Kim, S. Cho, K. Song, Condensation Heat Transfer Coefficients of Enhanced Tubes with Alternative Refrigerants for CFC11 and CFC12, International Journal of Refrigeration, Vol. 22,pp. 548-557, 1999.
http://dx.doi.org/10.1016/s0140-7007(99)00020-1

T. N. Nguyen, J. A. Orozco, Condensation of R113 on Enhanced Surfaces, ASHRAE Transactions, Vol. 100(1), pp.736-743, 1994.

W. Y. Cheng, C. C. Wang, Condensation of R410A on Enhanced Tubes, ASHRAE Transactions, Vol.100(1), pp.809-817, 1994.

Choudhari, C., Sapali, S., Experimental Performance Analysis of Refrigerant R290 for Water Cooler Application, (2017) International Review of Mechanical Engineering (IREME), 11 (6), pp. 419-425.
http://dx.doi.org/10.15866/ireme.v11i6.12843


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize