Open Access Open Access  Restricted Access Subscription or Fee Access

Influence of Liquid Viscosity on the Taylor Bubble Shape Under a Laminar Condition in the Falling Film Region and a Constant Froude Number


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i12.15730

Abstract


The purpose of this work is to computationally find how the liquid viscosity affects the shape of an air Taylor bubble, which rises up in a vertical pipe when the flow in the falling film region is laminar and the Froude number is approximately 0.35. Five liquid viscosities (0.015, 0.020, 0.025, 0.030 and 0.035 Pa s) were selected as sample cases for the investigation. The grid search method was employed to find the appropriate shape of a Taylor bubble for each selected liquid viscosity by considering the pressure distribution of the air inside the bubble. The computational result and the mathematical analysis show that the Taylor bubble shape will be slenderer if the liquid viscosity is higher.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Froude Number; Laminar; Slug Flow; Taylor Bubble; Viscosity

Full Text:

PDF


References


Zhang, H., Yang, Q., Images Analysis of Exact Bubble Contour in Gas/Liquid Two Phase Flow, (2013) International Review on Computers and Software (IRECOS), 8 (1), pp. 59-63.

J. Chahed, G. Bellakhel, First and second order turbulence closure for bubbly flows, International Journal on Heat and Mass Transfer - Theory and Applications, Vol. 2, n. 1, pp. 9-16, 2014.

D. Merrouche, K. Mohammedi, I. Belaidi, Bubble two-phase flow simulation with volume of fluid interface tracking method, International Journal on Heat and Mass Transfer - Theory and Applications, Vol. 3, n. 3, pp. 67-71, 2015.

Lertnuwat, B., A Study of Taylor Bubble Shapes in Stagnant Water Affected by Pipe Diameters and the Froude Number, (2017) International Review of Mechanical Engineering (IREME), 11 (1), pp. 55-60.
https://doi.org/10.15866/ireme.v11i1.10284

Essam A. Ibrahim, Milton R. Jaime, Patrick J. Geoghegan, A simplified model for flow boiling in expanding circular micro-channels, International Journal on Heat and Mass Transfer - Theory and Applications, Vol. 1, n. 6, pp. 325-329, 2013.

Santos, H., Góis, L., Dispersed Phase Holdup in a Sieve Plate Liquid-Liquid Extraction Column, (2013) International Review of Chemical Engineering (IRECHE), 5 (5), pp. 351-355.

Douvi, E., Margaris, D., Lazaropoulos, S., Svanas, S., Low Reynolds Number Investigation of the Flow Over a NACA 0012 Airfoil at Different Rainfall Rates, (2013) International Review of Mechanical Engineering (IREME), 7 (4), pp. 625-632.

S. Nogueira, M. L. Riethmuler, J.B.L.M. Campos, A.M.F.R. Pinto, Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids, Chemical Engineering Science, Vol. 61, pp. 845-857, 2006.
https://doi.org/10.1016/j.ces.2005.07.038

D. T. Dumitrescu, Strömung an einer luftblase im senkrechten Rohr, Zeitschrift fur Angewandte Mathematik und Mechanik , Vol. 23, pp. 139-149, 1943.
https://doi.org/10.1002/zamm.19430230303

J. D. Bugg, K. Mack, K. S. Rezkallah, A numerical model of Taylor bubbles rising through stagnant liquids in vertical tubes, International Journal of Multiphase Flow, Vol. 24, n. 2, pp. 271-281, 1998.
https://doi.org/10.1016/s0301-9322(97)00047-5

Z. S. Mao, A. E. Dukler, The motion of Taylor bubbles in vertical tubes. I - A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid, Journal of Computational Physics, Vol. 91, n. 1, pp. 132-160, 1990.
https://doi.org/10.1016/0021-9991(90)90008-o

Z. S. Mao, A. E. Dukler, The motion of Taylor bubbles in vertical tubes-II - Experimental data and simulations for laminar and turbulent flow, Chemical Engineering Science, Vol. 46, n. 8, pp. 2055-2064, 1991.
https://doi.org/10.1016/0009-2509(91)80164-t

S. Smith, , T. Taha, Z. Cui, Enhancing hollow fibre ultrafiltration using slug-flow - a hydrodynamic study, Desalination, Vol. 146, pp. 69-74, 2002.
https://doi.org/10.1016/s0011-9164(02)00491-5

T. Taha, Z. F. Cui, Hydrodynamics of slug flow inside capillaries, Chemical Engineering Science, Vol. 59, n. 6, pp. 1181-1190, 2004.
https://doi.org/10.1016/j.ces.2003.10.025

T. C. Thulasidas, M. A. Abraham, R. L. Cerro, Bubble-train flow in capillaries of circular and square cross section, Chemical Engineering Science, Vol. 50, n. 2, pp. 183-199, 1995.
https://doi.org/10.1016/0009-2509(94)00225-g

J. M. Van Baten, R. Krishna, CFD simulation of mass transfer from Taylor bubbles rising in circular capillaries, Chemical Engineering Science, Vol. 59, n. 12, pp. 2535-2545, 2004.
https://doi.org/10.1016/j.ces.2004.03.010

K. Hayashi, R. Kurimoto, A. Tomiyama, Terminal velocity of a Taylor drop in a vertical pipe, International Journal of Multiphase Flow, Vol. 37, pp. 241-251, 2011.
https://doi.org/10.1016/j.ijmultiphaseflow.2010.10.008

E. T. White, R. H. Beardmore, The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes, Chemical Engineering Science, Vol. 17, n. 5, pp. 351-361, 1962.
https://doi.org/10.1016/0009-2509(62)80036-0

W. R. Ahmad, J. M. DeJesus, M. Kawaji, Falling film hydrodynamics in slug flow, Chemical Engineering Science, Vol. 53, pp. 123-130, 1998.
https://doi.org/10.1016/s0009-2509(97)00276-5

R. V. Hout, D. Bernea, L. Shemer, Evolution of statistical parameters of gas-liquid slug flow along vertical pipes, International Journal of Multiphase Flow, Vol. 27, pp. 1579-1602, 2001.
https://doi.org/10.1016/s0301-9322(01)00016-7

A. M. F. R. Pinto, M. N. Coelho Pinheiro, J. B. L. Campos, On the Interaction of Taylor Bubbles Rising in Two-Phase Co-Current Slug Flow in Vertical Columns: Turbulent Wakes, Experiments in Fluids, Vol. 31, pp. 643-652, 2001.
https://doi.org/10.1007/s003480100310

H. K. Kytömaa, C. E. Brennen, Small amplitude kinematic wave propagation in two-component media, International Journal of Multiphase Flow, Vol. 17, n. 1, pp. 13-26, 1991.
https://doi.org/10.1016/0301-9322(91)90067-d

H. Cheng, J. H. Hills, B. J. Azzorpardi, A study of the bubble-to-slug transition in vertical gas-liquid flow in columns of different diameter, International Journal of Multiphase, Vol. 24, n. 3, pp. 431-452, 1998.
https://doi.org/10.1016/s0301-9322(97)00067-0

B. Sun, R. Wang, X. Zhao, D. Yan, The mechanism for the formation of slug flow in vertical gas-liquid two-phase flow, Solid State Electron, Vol. 46, n.12, pp. 2323-2329, 2002.
https://doi.org/10.1016/s0038-1101(02)00243-5

Mayor, T.S., Pinto, A.M.F.R. and Campos, J.B.L.M., Hydrodynamics of gas-liquid slug flow along vertical pipes in the laminar regimes-experimental and simulation study, Industrial & Engineering Chemistry Research, Vol. 46, pp. 3794-3809, 2007.
https://doi.org/10.1021/ie0609923

R. V. Hout, D. Bernea, L. Shemer, Evolution of hydrodynamic and statistical parameters of gas-liquid slug flow along inclined pipes, Chemical Engineering Science, Vol. 58, n. 1, pp. 115-133, 2003.
https://doi.org/10.1016/s0009-2509(02)00441-4

L. Shemer, Hydrodynamic and statistical parameters of slug flow, International Journal of Heat and Fluid Flow, Vol. 24, pp. 334-344, 2003.
https://doi.org/10.1016/s0142-727x(03)00024-9

B. Lertnuwat, Model for predicting the head shape of a Taylor bubble rising through stagnant liquids in a vertical Tube, Thammasat International Journal of Science and Technology, Vol. 20, n. 1, pp. 37-46, 2015.

J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics (3rd ed., Springer, 2002).

B. Lertnuwat, Shapes of an Air Taylor Bubble in Stagnant Liquids Influenced by Different Surface Tensions, International Journal of Applied Mechanics and Engineering, Vol. 23, n. 1, pp. 79-90, 2018.
https://doi.org/10.1515/ijame-2018-0005

S. Salakij, B. Lertnuwat, Influence of Viscosity on the Shape of an Air Taylor Bubble in a Stagnant Liquid under Laminar Condition in Falling Film Region, International Journal of Applied Engineering Research, Vol. 13, n. 1, pp. 8-13, 2018.

Razaami, A., Zorkipli, M., Lai, H., Abdullah, M., Razak, N., Unsteady Pressure Distribution of a Flapping Wing Undergoing Root Flapping Motion with Elbow Joint at Different Reduced Frequencies, (2017) International Review of Aerospace Engineering (IREASE), 10 (3), pp. 105-113.
https://doi.org/10.15866/irease.v10i3.11530

Hamdoun, S., Samri, H., Driouich, M., Sammouda, M., Bahrar, B., Gueraoui, K., A Numerical Modeling of Velocity Profiles and Shear Stress in Hydraulic Transient, (2017) International Review of Civil Engineering (IRECE), 8 (2), pp. 34-40.
https://doi.org/10.15866/irece.v8i2.11036


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize