Open Access Open Access  Restricted Access Subscription or Fee Access

Simulating and Designing Small Hydrokinetic Turbines: a Review


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i11.15525

Abstract


The increased use of renewable energy resources for rural electrification has encouraged research and experimental projects decreasing designs uncertainties. This paper presents a deep and critical review of the design of micro hydro-generation technologies for river applications. This article shows three principal aspects: design, analysis and computational tools to study vertical micro-turbines, including the ones that are not vertical but that are relevant for the actual research. An exhaustive review is presented and analyzed hereafter. An in-depth review analysis focused on design is carried out. As a result of this work, it is clear that despite the need for interest in using renewable resources technologies, there is still a lack of research about design focused on computational analysis, as evidenced by the limited number of publications so far.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


CFD; Fluid-Structure Interaction; Hydrokinetic Turbines; Mechanical Design

Full Text:

PDF


References


REN21, Renewables Global Status Report 2014, REN 21 STEERING COMMITTEE, 2014.

I. Boie, C. Kost, S. Bohn, M. Agsten, P. Bretschneider, O. Snjegovyic, M. Publika, M. Ragweed, T. Schlegl and D. Westermann, Opportunities and challenges of high renewable energy deployment and electricity exchange for North Africa and Europe–Scenarios for power sector and transmission infrastructure in 2030 and 2050, Renewable Energy, vol. 87, no. 1, pp. 130-144, 2016.
https://doi.org/10.1016/j.renene.2015.10.008

Instituto de Planificación de Soluciones Energéticas - IPSE, Energy solutions for the non-interconnected areas of Colombia, 2014.

M. Pehnt, Dynamic life cycle assessment (LCA) of renewable energy technologies, Renewable Energy, vol. 31, no. 1, pp. 55-71, 2006.
https://doi.org/10.1016/j.renene.2005.03.002

R. Ortiz Flórez, Small Hydroelectric Plants, Bogotá: Ediciones de la U., 2011.

J. Painul, Barriers to renewable energy penetration; a framework for analysis, Renewable Energy, vol. 24, no. 1, p. 73–89, 2001.
https://doi.org/10.1016/s0960-1481(00)00186-5

W. Margaret Amutha and V. Rajini, Cost-benefit and technical analysis of rural electrification alternatives in southern India using HOMER, Renewable and Sustainable Energy Reviews, vol. 62, pp. 236 - 246, 2016.
https://doi.org/10.1016/j.rser.2016.04.042

G. Bhuyan, M. T. Iqbal and J. Quaicoe, Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbine for river and tidal applications: A technology status review, Energy, vol. 86, no. 10, pp. 1823-1835, 2009.
https://doi.org/10.1016/j.apenergy.2009.02.017

Universidad de Chile, Centro de Computación Universidad de Chile, [Online].

Available: http://www.cec.uchile.cl/~jfiguero/historia.html. [Accessed Julio 09 2015].

J. D. Parres, Hydraulic Machines, México, 1966.

F. Balduzzi, A. Bianchini, G. Ferrara and L. Ferrari, Dimensionless numbers for the assessment of mesh and time step requirements in CFD simulations of Darrieus wind turbines, Energy, vol. 97, pp. 246-261,2016.
https://doi.org/10.1016/j.energy.2015.12.111

M. C, Hydraulic Turbomachines, ICAI, 1974.

National Aeronautics And Space Administration – NASA, What is Lift? May 05 2015 [Online]:
https://www.grc.nasa.gov/www/k-12/airplane/lift1.html

A. Beri, Y. Yao. Double Multiple Stream Tube Model and Numerical Analysis of Vertical Axis Wind Turbine. Energy and Power Engineering, Vol 3. pp. 262 – 270. 2011
https://doi.org/10.4236/epe.2011.33033

P. Tchakoua, R. Wakmkeue, M. Ouhrouche, G. Ekemb and T. Temeghe, A New Approach for Modeling Darrieus- Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of theoretical Formulations and Model Development Energies, 2015.
https://doi.org/10.3390/en81010684

H. Jiang, Y. Li, Z. Cheng, Performances of ideal wind turbine, Renewable Energy, Vol 83. Pp 658-662. November 2015.
https://doi.org/10.1016/j.renene.2015.05.013

G. A. van Kuik, The Lanchester–Betz–Joukowsky limit Wind Energy, vol. 10 pp. 289–291, 2007
https://doi.org/10.1002/we.218

R. Vennel, Exceeding the Betz limit with tidal turbines, Renewable Energy, Vol 55. Pp 277–286. July 2013.
https://doi.org/10.1016/j.renene.2012.12.016

T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook. John Wiley & Sons, Ltd. England, 2001.
https://doi.org/10.1002/0470846062

A. Niksiar, M. Sohrabu, A novel hydrodynamic model for conical spouted beds based on streamtubemodelling approach. Powder Technology, Vol 267. Pp 371-380. November 2014.
https://doi.org/10.1016/j.powtec.2014.08.005

S. Camporeale, V. Magi, Streamtube model for analysis of vertical axis variable pitch turbine for marine currents energy conversion, Energy Conversion and Management, Vol 41. Pp 1811-1827. November 2000.
https://doi.org/10.1016/s0196-8904(99)00183-1

P. Delafin, L. Wang, Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines. Renewable Energy, Vol 109. Pp 564-575. August 2017.
https://doi.org/10.1016/j.renene.2017.03.065

J. M. Huang y S. K. Ong, Structure design and analysis with integrated AR-FEA CIRP Annals - Manufacturing Technology, vol. 66, nº 1, pp. 149-152, 2017.
https://doi.org/10.1016/j.cirp.2017.04.035

L. Wang, R. Quant y A. Kolios, Fluid structure interaction modeling of horizontal-axis wind turbine blades based on CFD and FEA, Wind Engineering & Industrial Aerodynamics, vol. 1, pp. 11-25, 2016.
https://doi.org/10.1016/j.jweia.2016.09.006

Q.Wang, J. Goosen y F.van Keulen, An efficient fluid–structure interaction model for optimizing twistable flapping wings, Journal of Fluids and Structures, vol. 73, pp. 82-99, August 2017.
https://doi.org/10.1016/j.jfluidstructs.2017.06.006

Sang Yu Je, Yoon-Suk Chang, Sung-Sik Kang, Dynamic characteristics assessment of reactor vessel internals with fluid-structure interaction. Nuclear Engineering and Technology. 2017.
https://doi.org/10.1016/j.net.2017.05.003

L. Wang, G. Currao, F. Han, A. Neely, J. Young, F. Tian, An immersed boundary method for fluid–structure interaction with compressible multiphase flows, Journal of Computational Physics, vol 346. 2017.
https://doi.org/10.1016/j.jcp.2017.06.008

A. Zhang, P. Sun, F. Ming, A. Colagrossi, Smoothed particle hydrodynamics and its applications in fluid-structure interactions. Journal of Hydrodynamics, Ser. B, Vol 29. Pp. 187 – 216. October 2017.
https://doi.org/10.1016/s1001-6058(16)60730-8

K. Nordanger, A. Rasheed, K. Morten Okstad, A. Morten Kvarving, R. Holdahl, T. Kvamsdal, Numerical benchmarking of fluid–structure interaction: An isogeometric finite element approach. Ocean Engineering, Vol 124. Pp 324 – 339. September 2016.
https://doi.org/10.1016/j.oceaneng.2016.07.018

B. K. Sovacool and L. C. Bulan, Behind an ambitious mega project in Asia: The history and implications of the Bakun hydroelectric damin Borneo, Energy Policy, vol. 39, pp. 4842 - 4859, 2011.
https://doi.org/10.1016/j.enpol.2011.06.035

K. Benjamin, L. Sovacool and L.C. Bulan, Energy security and hydropower development in Malaysia: The drivers and challenges facing the Sarawak Corridor of Renewable Energy (SCORE) Renewable Energy, vol. 40, pp. 113 - 129, 2012.
https://doi.org/10.1016/j.renene.2011.09.032

H. Saldías, H. Ulloa, H. Rudnick and E. Recordón, " Comparative Evaluation of renewable energy generation plants through the application of the new renewable energy law recently approved in Chile," 25 mayo 2008. [Online]. Available:
http://power.sitios.ing.uc.cl/alumno08/renewables/EXTRAS/The_Chilean_renewables_law.pdf. [Accessed 18 Julio 2016].

M. Z. Jacobson and M. A. Delucchi, " Sustainable energy: Goal 2030," Investigación y Ciencia, vol. 400, pp. 20 - 27, 2010.

H. J. Vermaak, K. Kusakana and S. P. Koko, "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, vol. 29, pp. 625 - 633, 2014.
https://doi.org/10.1016/j.rser.2013.08.066

H. Sy-Ruen, M. Yen-Huai, C. Chia-Fu, S. Kazuichi and A. Toshiyuki, Theoretical and conditional monitoring of a small three-bladed vertical-axis micro-hydro turbine, Energy Conversion and Management, vol. 86, pp. 727 - 734, 2014.
https://doi.org/10.1016/j.enconman.2014.05.098

J. Rohmer, D. Knittel, G. Sturtzer, D. Flieller and J. Renaud, Modelling and experimental results of an Archimedes screw turbine, Renewable Energy, vol. 94, pp. 136 - 146, 2016.
https://doi.org/10.1016/j.renene.2016.03.044

A. López, J. A. Somolinos and L. Ramón Núñez, Energy Modeling of Primary Converters for the Exploitation of Marine Renewable Energies, Revista Iberoamericana de Automática e Informática industrial, vol. 11, pp. 224 - 235, 2011.

M. I Shahidul, S. Tarmizi, A. Yassin, A. Othman, H. Zen, T. Ching Hung and L.M. Djun, Modelling the Energy Extraction from In-stream Water by Multi Stage Blade System of Cross Flow Micro Hydro Turbine, Procedia Engineering, vol. 105, p. 488 – 494, 2015.
https://doi.org/10.1016/j.proeng.2015.05.081

N. Vatin, N. Lavrovand A. Shipilov, The Water Intake Facility for Diversion HPPs in Winter Operation Conditions in an Urban Area, Procedia Engineering, vol. 117, p. 369 – 375, 2015.
https://doi.org/10.1016/j.proeng.2015.08.177

J. Chen, H.X. Yang, C.P. Liu, C.H. Lau, M. Lo, A novel vertical axis water turbine for power generation from water pipelines Energy, 2013.
https://doi.org/10.1016/j.energy.2013.01.064

S. R. Huang, Y.H. Ma, C.F. Chen, K. Seki, T. Aso, Theorical and conditional monitoring of a small three-bladed vertical-axis micro hydro turbine Energy conversion and Management, 2014.
https://doi.org/10.1016/j.enconman.2014.05.098

S. Laín, B. Quintero, Y. Ulianov and D. Trujillo, Simulation of Vertical Axis Water Turbines, IEEE, 2012.

J. Zanette, D. Imbaultand A. Tourabi, A design methodology for cross flow water turbines, Renewable Energy, vol. 35, pp. 997 - 1009, 2010.
https://doi.org/10.1016/j.renene.2009.09.014

S. Patel and P. Pakale, Study On Power Generation By Using Cross Flow Water Turbine In Micro Hydro Power Plant, International Journal of Research in Engineering and Technology, pp. 1 - 4, Mayo 2015.
https://doi.org/10.15623/ijret.2015.0405001

D. Kilama Okot, Review of small hydropower technology, Renewable and Sustainable Energy Reviews, vol. 26, pp. 515 - 620, 2013.
https://doi.org/10.1016/j.rser.2013.05.006

G. Samprogna Mohor, D. A. Rodriguez, J. Tomasella and J. Siqueira Júnior, Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant, Journal of Hydrology: Regional, vol. 4, p. 41–59, 2015.
https://doi.org/10.1016/j.ejrh.2015.04.003

Proyecto de FGT I 2012, River turbines: an alternative energy for the Amazon, Hidrored 2002 (1), pp. 12-15, 2002.

K. Shimokawa, A. Furukawa, K. Okuma, D. Matsushita and. S. Watanabe, Experimental study on simplification of Darrieus-type hydro turbine with inlet nozzle for extra-low head hydropower utilization, Renewable Energy, vol. 41, p. 376–382, 2012.
https://doi.org/10.1016/j.renene.2011.09.017

Y. Chompoobutrgool, W. Li and L. Vanfretti, Development and implementation of hydro turbine and governor models in a free and open source software package, Simulation Modelling Practice and Theory, vol. 24, pp. 84 - 102, 2012.
https://doi.org/10.1016/j.simpat.2012.02.005

R. Luquet, D. Bellevre, D. Fréchou, P. Perdon and P. Guinard, Design and model testing of an optimized ducted marine current turbine, International Journal of Marine Energy, vol. 2, p. 61–80, 2013.
https://doi.org/10.1016/j.ijome.2013.05.009

M. Belhache, S. Guillou, P. GRangeret, A. Santa-Cruz and F. Bellanger, Fluid Structure Interaction of a loaded Darrieus Marine Current Turbine in International Conference on Renewable Energies and Power Quality, Bilbao, 2013.
https://doi.org/10.24084/repqj11.515

Larrea L, Writer, Vibration Analysis of a VAWT - Master Thesis Industrial Engineering. [Performance]. Universidad Pública de Navarra, 2013.

S. Laín, O. López and B. Quintero, Design Optimization of a Vertical Axis Water Turbine with CFD, Alternative Energies, vol. 34, pp. 113 - 139, 2013.
https://doi.org/10.1007/978-3-642-40680-5_6

E. Koç, T. Yavu, B. Kılkış, Ö. Erol, A. Balas and T. Aydemir, Numerical and experimental analysis of the twin-blade hydrofoil for hydro and wind turbine applications, Ocean Engineering, vol. 97, pp. 12 - 20, 2015.
https://doi.org/10.1016/j.oceaneng.2014.12.037

G. A. Aggidis and A. Židonis, Hydro turbine prototype testing and generation of performance curves: Fully automated approach, Renewable Energy, vol. 71, p. 433–441, 2014.
https://doi.org/10.1016/j.renene.2014.05.043

C. Rebollo Mugueta, Modelling, analysis and options for improvement of horizontal axis wind turbine design, October 2014. [Online].

Available: http://academica-e.unavarra.es/handle/2454/14245.

A. H. Muñoz, L. E. Chiang and E. A. De la Jara, A design tool and fabrication guidelines for small low cost horizontal axis hydrokinetic turbines, Energy for Sustainable Development, vol. 22, p. 21–33, 2014.
https://doi.org/10.1016/j.esd.2014.05.003

D. Rivadeneira Moya, Modeling and simulation of the operation of generators that use hydro-kinetic turbines in low-flow rivers March 2015. [Online]. Available:
http://www.dspace.ups.edu.ec/handle/123456789/8015

V. Peña García, Design of a hydro-kinetic turbine for the energetic utilization of non-plentiful rivers, 08 marzo 2015. [Online]. Available:
http://pirhua.udep.edu.pe/handle/123456789/2058. [Accessed 19 March 2016].

Jiménez C, Analysis of a conversion system for hydrocinetic generation based on multiphase machines 23 March 2015. [Online]. Available:
http://repositorio.utp.edu.co/dspace/handle/11059/5949.

Thanigaivel, G. (2015). Design and analysis of drag and lift vertical axis wind turbine. Journal of Chemical and Pharmaceutical Sciences. 7. 106-108.

Ferreira, C. Simao, G. Ben, Aerofoil optimization for vertical-axis wind turbines Wind Energy, pp. 1371 - 1585, 2015.
https://doi.org/10.1002/we.1762

C. M. Borg M, A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines, Offshore and Renewable Energy, Cranfield University, 2015.

N. Acharua, C.-G. Kim, B. Thapa and Y.-H. Lee, Numerical analysis and performance enhancement of a cross-flow hydro turbine, Renewable Energy, vol. 80, pp. 819 - 826, 2015.
https://doi.org/10.1016/j.renene.2015.01.064

H. Liu, Y. Lin, M. Shi, W. Li, H. Gu, Q. Xu and Le Tu, A novel hydraulic-mechanical hybrid transmission in tidal current turbines, Renewable Energy, vol. 81, p. 31–42, 2015.
https://doi.org/10.1016/j.renene.2015.02.059

A. Židonis, A. Panagiotopoulos, G. Aggidi, J. Anagnostopoulos and D. Papantonis, Parametric optimization of two Pelton turbine runner designs using CFD, Journal of Hydrodynamics, Ser. B, vol. 23, no. 3, pp. 403-412, 2015.
https://doi.org/10.1016/s1001-6058(15)60498-x

W. Schleicher, J. Riglin and A. Oztekin, Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design, Renewable Energy, vol. 76, p. 234–241, 2015.
https://doi.org/10.1016/j.renene.2014.11.032

B. Wahyud, S. Soeparman and H. Hoeijmaker, Optimization Design of Savonius Diffuser Blade with Moving Deflector for Hydrokınetıc Cross Flow Turbıne Rotor, Energy Procedia, vol. 68, pp. 244-253, 2015.
https://doi.org/10.1016/j.egypro.2015.03.253

P. Jaohindy, S. McTavish, F. Garde and A. Bastide, An analysis of the transient forces acting on Savonius rotors with different aspect ratios, Renewable Energy, vol. 55, pp. 286 - 295, 2013.
https://doi.org/10.1016/j.renene.2012.12.045

R. Lanzafame, S. Mauro and M. Messina, 2D CFD Modelling of H-Darrieus Wind Turbines using a Transition Turbulence Model, Energy Procedia, vol. 45, pp. 131 -140, 2014.
https://doi.org/10.1016/j.egypro.2014.01.015

A. Krishnan and M. Paraschivoiu, 3D analysis of building mounted VAWT with diffuser shaped shroud, Sustainable Cities and Society, 2015.
https://doi.org/10.1016/j.scs.2015.06.006

Q. Li, T. Maeda, Y. Kamada, J. Murata, K. Furukawa and M. Yamamoto, Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine, Energy, vol. 90, pp. 784 - 795, 2015.
https://doi.org/10.1016/j.energy.2015.07.115

E. A. García Ramos, M. A. Arjona, C. A. Morales, Speed control systems used in Horizontal Axis Wind Turbines in 15th National conference on Electromechanic Engineering and (CNIES 2015), México, 2015.

A. Rossetti and G. Pavesi, Comparison of different numerical approaches to the study of H-Darrieus turbines start-up Renewable Energy, vol. 50, pp. 7-19, 2013.
https://doi.org/10.1016/j.renene.2012.06.025

J. McNaughton, F. Billard and A. Revell, Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at arrange of tip-speed ratios, Journal of Fluids and Structures, vol. 47, pp. 124 - 138, 2014
https://doi.org/10.1016/j.jfluidstructs.2013.12.014

Z. Jerónimo and I. Didier, Fluid-structure interaction and design of Water Current Turbines, Scientific Bulletin of the "Polytechnic" University of Timisoara Transactions on Mechanics, p. 66, 2007.

G. Ardizzon, G. Cavazzini, G. Pavesi, A new generation of small hydro and pumped-hydro power plants: Advances and future challenges, Renewable and Sustainable Energy Reviews, Volume 31, March 2014, Pages 746-761.
https://doi.org/10.1016/j.rser.2013.12.043

R. Henri van Els, C. Oliveira, A.M. Díaz, L.F. Balduino Hydrokinetic turbine for isolated populations, Hidrored, pp. 13 - 15, 2003.

S. Aramayo, S. A. Oller and Sergio, Compound Material Vs Steel In The Shaping Of A Hydroelectric Turbine Rotor - Advantages In Its Use, Revista Iberoamericana de Ingeniería Mecánica, pp. 03-16, 2012.

P. Cherian, et al., Horizontal-axis hydrokinetic water turbine system. USA Patent US 13191537, 27 07 2011.

A-man Zhang, Peng-nan Sun, Fu-ren Ming, A. Colagrossi. Smoothed particle hydrodynamics and its applications in fluid-structure interactions Journal of Hydrodynamics, pp. 187-216,2017.
https://doi.org/10.1016/s1001-6058(16)60730-8

Ming-Jian Li, Nian-Mei Zhang, Ming-Jiu Ni Magneto-fluid-structure interaction issues for vibrating rigid bodies in conducting fluids: The numerical and the analytical approaches Computers & Structures, pp. 41-57, 2018.
https://doi.org/10.1016/j.compstruc.2018.09.002

Dominic Mokbel, Helmut Abels, Sebastian Aland A phase-field model for fluid-structure interaction Journal of Computational Physics, pp.823-840, 2018.
https://doi.org/10.1016/j.jcp.2018.06.063

GH. R. Kefayati, H. Tang, A. Chan Immersed Boundary-Finite Difference Lattice Boltzmann method through fluid–structure interaction for viscoplastic fluids”, Journal of Fluids and Structures, Vol.83, pp. 238-258, 2018.
https://doi.org/10.1016/j.jfluidstructs.2018.09.007

Raja Jayendiran, Bakr Nour, Annie Ruimi Fluid-structure interaction (FSI) analysis of stent-graft for aortic endovascular aneurysm repair (EVAR): Material and structural considerations”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 87, pp. 95-110, 2018
https://doi.org/10.1016/j.jmbbm.2018.07.020


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize