Open Access Open Access  Restricted Access Subscription or Fee Access

Effects of the Variation of Organic Carbon Rate on the Biogas Production During Anaerobic Digestion


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i10.15399

Abstract


In this work, in the anaerobic digestion of effluent from wastewater treatment plant (WWTP) of paper pulp mill has been studied, because they contain organic carbon. The biogas production at the WWTP of Kenitra varies from a day to another depending on the concentration of organic carbon rate present in the effluent. For that reason, the effects of the initial organic carbon contained in effluent on the biogas production during anaerobic digestion have been simulated. Therefore, the production of biogas is estimated by using different input, assuming that the initial organic carbon rate in the effluent varies from zero to 5kg/m3 and by using the proposed approach by the mathematical model that describes the real behavior of the digesters. Results have showed that the biogas production increases as a function of carbon organic rate up to 2.5kg/m3, then it tends to stabilize. The stabilization of biogas production observed above 2.5kg/m3 might be correlate with reactions occurring during hydrolysis, acidogenesis and methanogenesis steps.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Biogas Production; Dissolved Organic Matter; Liquid Effluent; Anaerobic Digestion; Numerical Model

Full Text:

PDF


References


C. Rodriguez, A. Alaswad, Z. El-Hassan, A.G. Olabi, Mechanical pretreatment of waste paper for biogas production. Waste Management, Vol. 68, pp. 157-164, 2017.
http://dx.doi.org/10.1016/j.wasman.2017.06.040

A. do Carmo Precci Lopes, et al., Biogas production from thermophilic anaerobic digestion of kraft pulp mill sludge, Renewable Energy, 2017.
http://dx.doi.org/10.1016/j.renene.2017.08.044

H. Dhar, P. Kumar, S. Kumar, S. Mukherjee, Atul N.Vaidya. Effect of organic loading rate during anaerobic digestion of municipal solid waste. Bioresource Technology, Vol. 217, pp. 56-61, 2016.
http://dx.doi.org/10.1016/j.biortech.2015.12.004

S. Q. Aziz, H. A. Aziz, M. S. Yusoff, M. Bashir, M. Umar, Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. Journal of Environmental Management, Vol. 91, pp. 2608-2614, 2010.
http://dx.doi.org/10.1016/j.jenvman.2010.07.042

H. Vashi, O.T. Iorhemen, J.H. Tay, Aerobic granulation: A recent development on the biological treatment of pulp and paper wastewater. Environmental Technology & Innovation, 2017.
http://dx.doi.org/10.1016/j.eti.2017.12.006

T. Xie, S. Xie, M. Sivakumar, L.D. Nghiem, Relationship between the synergistic/antagonistic effect of anaerobic co-digestion and organic loading, International Biodeterioration & Biodegradation, Vol. 124, pp. 155-161, 2017.
http://dx.doi.org/10.1016/j.ibiod.2017.03.025

D. Li, S. Liu, L. Mi, Z. Li, Y. Yuan, Z. Yan, X. Liu, Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure, Bioresource Technology, 2015.
http://dx.doi.org/10.1016/j.biortech.2015.03.040

M. C. Nelson, M. Morrison, Z. Yu, A meta-analysis of the microbial diversity observed in anaerobic digesters, Bioresour Techn, Vol. 102, pp. 3730–3739, 2011.
http://dx.doi.org/10.1016/j.biortech.2010.11.119

R. Toczyłowska-Mamińska, Limits and perspectives of pulp and paper industry wastewater treatment – A review, Renewable and Sustainable Energy Reviews, Vol. 78, pp. 764–772, 2017.
http://dx.doi.org/10.1016/j.rser.2017.05.021

M. El Fadel, A. N. Findikakis et al, Numerical Modeling of Generation and Transport of Gas and Heat in Landfills I. Model Formulation. Waste Management and Research, Vol. 14, pp. 483-504, 1996.
http://dx.doi.org/10.1177/0734242x9601400506

V. A. Vavilin, S. V. Rytov, L. Ya. Lokshina, Distributed Model of Solid Waste Anaerobic Digestion. Wiley periodical Incpp, pp. 66-73, 2002.
http://dx.doi.org/10.1002/bit.10450

S. Men-La-Yakhaf, K. Gueraoui, M. Driouich, New numerical and mathematical code reactive mass transfer and heat storage facilities of argan waste, Advanced Studies in Theoretical Physics, Vol. 8, no.10, pp. 485 – 498, 2014.
http://dx.doi.org/10.12988/astp.2014.4331

R. Kadam, N.L. Panwar, Recent advancement in biogas enrichment and its applications, Renewable and Sustainable Energy Reviews, Vol. 73, pp. 892-903, 2017.
http://dx.doi.org/10.1016/j.rser.2017.01.167

A. Reungsang, S. Sittijunda, C. Sreela-or. Methane production from acidic effluent discharged after the hydrogen fermentation of sugarcane juice using batch fermentation and UASB reactor. Renewable Energy, Vol. 86, pp. 1224-1231, 2016.
http://dx.doi.org/10.1016/j.renene.2015.09.051

K. F. Adekunle, J. A. Okolie, A Review of Biochemical Process of Anaerobic Digestion, Advances in Bioscience and Biotechnology, Vol. 6, pp. 205-212, 2015.
http://dx.doi.org/10.4236/abb.2015.63020

R. Chandra, H. Takeuchi, T. Hasegawa, Methane Production from Lignocellulosic Agricultural Crop Wastes: A Review in Context to Second Generation of Biofuel Production, Renewable and Sustainable Energy Reviews, Vol.16, pp. 1462-1476, 2012.
http://dx.doi.org/10.1016/j.rser.2011.11.035

J. A. Ogejo, Z. Wen ,J. Ignosh, E. Bendfeldt, E. R. Collins, Biomethane technology. Virginia Cooperative Extencion. Publication, pp. 442–881, 2009.

Yadvika, Santosh , T. R. Sreekrishnan , S. Kohli , V. Rana, Enhancement of biogas production from solid substrates using different techniques-a review. Bioresource Technology, Vol. 95, pp.1–10, 2004.
http://dx.doi.org/10.1016/j.biortech.2004.02.010

E. Jankowska, J. Chwialkowska, M. Stodolny, P. O. -Popiel, Volatile fatty acids production during mixed culture fermentation–The impact of substrate complexity and pH, Chemical Engineering Journal, Vol. 326, pp. 901-910, 2017.
http://dx.doi.org/10.1016/j.cej.2017.06.021

R. Kigozi, A. Aboyade, E. Muzenda, Biogas production using the organic fraction of municipal solid waste as feedstock, Int'l Journal of Research in Chemical, Metallurgical and Civil Engg, Vol. 1, 2014.

I. Siegert, C. Banks, The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, Vol. 40, pp. 3412–3418, 2005.
http://dx.doi.org/10.1016/j.procbio.2005.01.025

J. Monod, The growth of bacterial cultures. Annual Review of Microbiology III, 1949.
http://dx.doi.org/10.1146/annurev.mi.03.100149.002103

Men-la-yakhaf, S., Gueraoui, K., Maaouni, A., Driouich, M., Numerical and Mathematical Modeling of Reactive Mass Transfer and Heat Storage Installations of Argan Waste, (2014) International Review of Mechanical Engineering (IREME), 8 (1), pp. 236-240.
http://dx.doi.org/10.15866/ireme.v8i1.1265

S. Babel, K. Fukushi, B. Sitanrassamee. Effect of acid speciation on solid waste liquefaction in an anaerobic acid digester, Water Res, Vol. 38, pp. 2417-2423, 2004.
http://dx.doi.org/10.1016/j.watres.2004.02.005

M. E. Montingellia, S. Tedesco, A.G. Olabi, Biogas production from algal biomass: A review, Renewable and Sustainable Energy Reviews, Vol. 43, pp. 961–972, 2015.
http://dx.doi.org/10.1016/j.rser.2014.11.052

M. T. Sun, X. L. Fan, X. X. Zhao, S. F. Fu, S. He, M. R. K. Manasa, R. B. Guo, Effects of organic loading rate on biogas production from macroalgae: performance and microbial community structure, Bioresource Technology, 2017.
http://dx.doi.org/10.1016/j.biortech.2017.03.075

Alhassan, M., Abdulmumeen, N., Garba, M., Isah, A., Full 42 Factorial Experimental Design of Biogas Production from Cow Dung, (2016) International Review of Chemical Engineering (IRECHE), 8 (1), pp. 4-7.
http://dx.doi.org/10.15866/ireche.v8i1.8107

Alhassan, M., Odigure, J., Evaluation of a Prototype Biodigester for the Production of Organic Fertilizer from Cow Dung, (2016) International Review of Chemical Engineering (IRECHE), 8 (1), pp. 1-3.
http://dx.doi.org/10.15866/ireche.v8i1.6332

Mohcine, A., Gueraoui, K., Men-la-yakhaf, S., Mathematical and Numerical Modeling of the Valorization of Household Waste in Morocco Based on the Model of Brooks, (2017) International Review of Civil Engineering (IRECE), 8 (1), pp. 19-24.
http://dx.doi.org/10.15866/irece.v8i1.11046


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize