Open Access Open Access  Restricted Access Subscription or Fee Access

Mechanical, Thermophysical and Aerothermochemical Processes at Forest Fuel Ignition Caused by the Heated to High Temperatures Single Metal Particle


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i6.15065

Abstract


The particles of metals and nonmetals heated up to high temperatures are the most common sources of the human-caused ignitions. As a rule, metal particles are formed as a result of welding and cutting metals, as well as a result of accidents at industrial facilities. Metal particles, namely steel particles, are considered in this paper. The experimental installation is equipped with a high-speed camera for capturing the processes of particle interaction with a typical forest fuel (dead grass) and its ignition. A compact tube furnace was used as a heater. The main regularities that characterize a complex of mechanical, thermophysical and aerothermochemical processes are revealed during ignition of a typical forest fuel. The ignition conditions and the ignition delays of the forest fuel by the heated to high temperatures particle are established. Conclusions are presented about fire danger of the particles heated to high temperature. Recommendations are proposed for the development of physical and mathematical models to simulate forest fuel ignition by the heated to high temperatures single particle.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Experiment; Ignition; Forest Fuel; Particle; High-Speed Camera; Ignition Delay; Physical Mechanism

Full Text:

PDF


References


F. Tedim, G. Xanthopoulos, V. Leone Chapter 5 - Forest Fires in Europe: Facts and Challenges Wildfire Hazards, Risks and Disasters (Elsevier, 2015).
http://dx.doi.org/10.1016/b978-0-12-410434-1.00005-1

K. F. Kipfmueller, E. A. Schneider, S. A. Weyenberg, L. B. Johnson Historical drivers of the frequent fire regime in the red pine forests of Voyageurs National Park, MN, USA. Forest Ecology and Management. Vol. 405, 2017, pp. 31-43.
http://dx.doi.org/10.1016/j.foreco.2017.09.014

E. Yu. Maksimova, A. S. Tsibart, E. V. Abakumov Soil properties in the Tol'yatti pine forest after the 2010 catastrophic wildfires, Eurasian Soil Science, Vol. 47. 2014. pp. 940-951.
http://dx.doi.org/10.1134/s1064229314090087

G. V. Kuznetsov, P. A. Strizhak Evaporation of Water Droplets Moving Through High-Temperature Gases Journal of Engineering Physics and Thermophysics. Vol. 91. 2018. pp. 97-103.
http://dx.doi.org/10.1007/s10891-018-1723-1

A. Almer, T. Schnabel, S. Lukas, R. Perko, A. Köfler, V. Pammer-Schindler International forest firefighting concepts based on aerial support strategies, Proceedings of the 14th International Conference on Telecommunications, ConTEL 2017, article N 8000048, pp. 123-130.
http://dx.doi.org/10.23919/contel.2017.8000048

H. Lin et al. A fuzzy inference and big data analysis algorithm for the prediction of forest fire based on rechargeable wireless sensor networks, Sustainable Computing: Informatics and Systems. 2017.
http://dx.doi.org/10.1016/j.suscom.2017.05.004

T. Hu, G. Zhou Drivers of lightning- and human-caused fire regimes in the Great Xing’an Mountains, Forest Ecology and Management, Vol. 329, 2014. pp. 49-58.
http://dx.doi.org/10.1016/j.foreco.2014.05.047

Canadian Wildland Fire Information System. Official site. Access: http://cwfis.cfs.nrcan.gc.ca/home (Available 02 April 2018).

WFAS Wildland Fire Assessment System. Official site. Access: http://www.wfas.net (Available 02 April 2018).

European Forest Fire Information System. Official site. Access: http://effis.jrc.ec.europa.eu (Available 02 April 2018).

Information system for remote monitoring of forest fires ISDM-Rosleskhoz. Official site. Access: https://nffc.aviales.ru/main_pages/index.shtml (Available 02 April 2018).

N. V. Baranovskiy, G. V. Kuznetsov Forest fire occurrences and ecological impact prediction: monograph. (Novosibirsk: Publishing House of the Siberian Branch of the Russian Academy of Science, 2017).
http://dx.doi.org/10.15372/forest2017bnv

A. V. Zakharevich, N. V. Baranovskiy Ignition conditions and characteristics for high-porosity condensed materials subjected to local conductive heating, Russian Journal of Physical Chemistry B, Vol. 9. 2015. pp. 911-914.
http://dx.doi.org/10.1134/s1990793115060196

V. N. Vilyunov Theory of ignition of the Condensed Substances. (Novosybirsk: Science, Siberian Department. 1984) (In Russian)

A. M. Grishin, Mathematical modeling of forest fire and new methods of fighting them. (Tomsk: Publishing House of the Tomsk State University, 1997).

N. V. Baranovskii, A. V. Zakharevich Conditions and Characteristics of the Ignition of a Typical Vegetable Combustible Material by a Local Energy Source, Journal of Engineering Physics and Thermophysics, Vol. 89. 2016. pp. 1538-1544.
http://dx.doi.org/10.1007/s10891-016-1524-3

N. Hernández, A. Fuentes, J. L. Consalvi, J. C. Elicer-Cortés Spontaneous ignition of wildland fuel by idealized firebrands, Experimental Thermal and Fluid Science, 2018.
http://dx.doi.org/10.1016/j.expthermflusci.2018.01.037

I. V. Yanko, Pyrology assessment of the territory of the Tomsk region. Dissertation. (Tomsk: Tomsk State Pedagogical University, 2005) (In Russian).

N. P. Kurbatskiy Research of properties and quantity of forest combustible materials, Questions of forest pyrology. (Institute of the Siberian Branch of the Academy of Sciences of the USSR, Krasnoyarsk, 1970) (In Russian).

A. V. Volokitina, M. A. Sofronov Classification and mapping of vegetable fuels. (Novosibirsk: Publishing House of The Siberian Branch of the Russian Academy of Sciences, 2002) (In Russian).

A. M. Grishin, V. A. Perminov Transition of the surface forest fire in the crown fire, Physics of Combustion and Explosion, Vol.26. 1990. pp. 27-35. (In Russian).

Baranovskiy, N., Forest Fire Danger Assessment Using SPMD-Model of Computation for Massive Parallel System, (2017) International Review on Modelling and Simulations (IREMOS), 10 (3), pp. 193-201.
http://dx.doi.org/10.15866/iremos.v10i3.10570

N. Baranovskiy, M. Zharikova A web-oriented geoinformation system application for forest fire danger in the typical forests of the Ukraine, Lecture Notes in Geoinformation and Cartography. 2014. (199669), pp. 13-22.
http://dx.doi.org/10.1007/978-3-319-08180-9_2

N. V. Baranovskiy, G. V. Kuznetsov Coniferous tree ignition by cloud-to-ground lightning discharge using approximation of “ideal” crack in bark, JP Journal of Heat and Mass Transfer, Vol. 14. 2017. pp. 173-186.
http://dx.doi.org/10.17654/hm014010173

N. V. Baranovskiy, G. V. Kuznetsov Mathematical simulation of deciduous tree ignition by cloud-to-ground lightning discharge using large vessels approximation, JP Journal of Heat and Mass Transfer, Vol. 14. 2017. pp. 533-545.
http://dx.doi.org/10.17654/hm014040533

N. V. Baranovskiy, G. V. Kuznetsov, T. N. Nemova High temperature wood particles formation caused by the cloud-to-ground lightning discharge through the coniferous tree trunk, Far East Journal of Mathematical Sciences, Vol. 102. 2017. pp. 1033-1044.
http://dx.doi.org/10.17654/ms102051033

J. E. J. Staggs A simple model of polymer pyrolysis including transport of volatiles, Fire Safety Journal. Vol. 34. 2000. pp. 69 – 80.
http://dx.doi.org/10.1016/s0379-7112(99)00043-0

C. Di Blasi, Modelling and simulation of combustion processes of charring and non-charring solid fuels, Progress in Energy and Combustion Science. Vol. 19. 1993. pp. 71-104.
http://dx.doi.org/10.1016/0360-1285(93)90022-7

S. Carlslaw, J. C. Jaeger, Conduction of heat in solids. (Oxford: Oxford University Press, 1984).

G. Landau, Heat conduction in a melting solid, Quarterly Journal of Applied Mathematics, Vol. 8. 1950. pp. 81-94.
http://dx.doi.org/10.1090/qam/33441

M. J. Billings, L. Warren, R. Wilkins, Thermal erosion of electrical insulating materials, IEEE Transactions on Electrical Insulation. Vol. 6,. 1971. pp. 82-90.
http://dx.doi.org/10.1109/tei.1971.299158

S. Rastegar, M. Motamedi, A. J. Welch, L. J. Hayes, A theoretical study of the effect of optical properties in laser ablation of tissue, IEEE Transactions on Biomedical Engineering. Vol. 36. 1989. pp. 1180-1187.
http://dx.doi.org/10.1109/10.42112

A. Delichatsios, Chen Asymptotic, approximate and numerical solutions for the heatup and pyrolysis of materials including reradiation losses, Combustion and Flame. Vol. 92. 1993. pp. 292-307.
http://dx.doi.org/10.1016/0010-2180(93)90041-z

J. Quintiere, N. Iqbal, An approximate integral model for the burning rate of a thermoplastic-like material, Fire and Materials. Vol. 18. 1994. pp. 89-98.
http://dx.doi.org/10.1002/fam.810180205

J. E. J. Staggs, A discussion of modelling idealised ablative materials with particular reference to fire retesting, Fire Safety Journal. Vol. 28. 1997. pp. 47-66.
http://dx.doi.org/10.1016/s0379-7112(96)00062-8

C. Vovelle, J. Delfau, M. Reuillon, Experimental and numerical study of the thermal degradation of PMMA, Combustion Science and Technology. Vol. 53. 1987. pp. 187-201.
http://dx.doi.org/10.1080/00102208708947026

J. E. J. Staggs, R. H. Whiteley, Modelling the combustion of solid-phase fuels in cone calorimeter experiments, Proceedings of Interflam '96 (7th International Fire Science & Engineering Conference). Interscience Communications, 1996, P. 103.
http://dx.doi.org/10.1002/(sici)1099-1018(199903/04)23:2%3C63::aid-fam671%3E3.0.co;2-3

C. Di Blasi, I. S. Wichman, Effects of solid-phase properties on flames spreading over composite materials, Combustion and Flame. Vol. 102. 1995. pp. 229-240.
http://dx.doi.org/10.1016/0010-2180(95)00003-o

J. E. J. Staggs A theoretical investigation into modelling thermal degradation of solids incorporating finite rate kinetics, Combustion Science and Technology. Vol. 123. 1997. pp. 261-285.
http://dx.doi.org/10.1080/00102209708935631

M. J. Antal, G. Varhegyi, Cellulose pyrolysis kinetics: the current state of knowledge, Industrial & Engineering Chemistry Research. Vol. 34. 1995. pp. 703–717.
http://dx.doi.org/10.1021/ie00042a001

B. Moghtaderi, The state-of-the-art in pyrolysis modeling of lignocellulosic solid fuels, Fire and Materials. Vol. 30. 2006. pp. 1–34.
http://dx.doi.org/10.1002/fam.891

J. Larfeldt, B. Leckner, M. C. Melaaen, Modeling and measurements of the pyrolysis of large wood particles, Fuel. Vol. 79. 2000. pp. 1637–1643.
http://dx.doi.org/10.1016/s0016-2361(00)00007-7

B. V. Babu, A. S. Chaurasia, Modeling for pyrolysis of solid particle: kinetics and heat transfer effects, Energy Conversion and Management. Vol. 44. 2003. pp. 2251–2275.
http://dx.doi.org/10.1016/s0196-8904(02)00252-2

A. Galgano, C. Di Blasi, Modeling the propagation of drying and decomposition fronts in wood, Combustion and Flame. Vol. 139. 2004. pp. 16–27.
http://dx.doi.org/10.1016/j.combustflame.2004.07.004

M. Bellais, K. O. Davidssonb, T. Liliedahla, K. Sjostroma, J. B. C. Pettersson, Pyrolysis of large wood particles: a study of shrinkage importance in simulation, Fuel. Vol. 82. 2003. pp. 1541–1548.
http://dx.doi.org/10.1016/s0016-2361(03)00062-0

M. L. Janssens, Modeling of the thermal degradation of structural wood members exposed to fire, Fire and Materials. Vol. 28. 2004. pp. 199–207.
http://dx.doi.org/10.1002/fam.848

D. K. Shen, M. X. Fang, Z. Y. Luo, K. F., Cen Modeling pyrolysis of wet wood under external heat flux, Fire Safety Journal. Vol. 42. 2007. pp. 210 – 217.
http://dx.doi.org/10.1016/j.firesaf.2006.09.001

Ch. Lautenberger, C. Fernandez-Pello, Generalized pyrolysis model for combustible solids, Fire Safety Journal. Vol. 44. 2009. pp. 819 – 839.
http://dx.doi.org/10.1016/j.firesaf.2009.03.011

J. E. J. Staggs Modeling thermal degradation of polymers using single-step first-order kinetics, Fire Safety Journal. Vol. 32. 1999. pp. 17–34.
http://dx.doi.org/10.1016/s0379-7112(98)00026-5

J. T. Kuo, C. L., Hsi Pyrolysis and ignition of single wooden spheres heated in high-temperature streams of air, Combustion and Flame. Vol. 142. 2005. pp. 401–412.
http://dx.doi.org/10.1016/j.combustflame.2005.04.002

C. Di Blasi, Modeling the effects of high radiative heat fluxes on intumescent material decomposition, Journal of Analytical and Applied Pyrolysis. Vol. 71. 2004. pp. 721–737.
http://dx.doi.org/10.1016/j.jaap.2003.10.003

S. V. Leach, G. Rein, J. L. Ellzey, O. A. Ezekoye, Kinetic and fuel property effects on forward smoldering combustion, Combustion and Flame. Vol. 120. 2000. pp. 346–358.
http://dx.doi.org/10.1016/s0010-2180(99)00089-9

W. Chan Park, A. Atreya, H. R. Baum, Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis, Combustion and Flame. Vol. 157. 2010. pp. 481–494.
http://dx.doi.org/10.1016/j.combustflame.2009.10.006

C. Di Blasi, C. Branca, A. Santoro, E. Gonzalez Hernandez, Pyrolytic behavior and products of some wood varieties, Combustion and Flame. Vol. 124. 2001. pp. 165-177.
http://dx.doi.org/10.1016/s0010-2180(00)00191-7

V. Strezov, B. Moghtaderi, J. Lucas Thermal study of decomposition of selected biomass samples, Journal of Thermal Analysis and Calorimetry. Vol. 72. 2003. pp. 1041–1048.
http://dx.doi.org/10.1023/a:1025003306775

C. A. Koufopanos, N. Papayannakos, G. Maschio, A. Luchesi, Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects, Canadian Journal of Chemical Engineering. Vol. 69. 1991. pp. 907–915.
http://dx.doi.org/10.1002/cjce.5450690413

A. Atreya Pyrolysis, Ignition and Flame Spread on Horizontal Surfaces of Wood. Ph.D. thesis. (Harvard University, Cambridge, MA, 1983).

M. G. Gronli, M. C. Melaaen, Mathematical model for wood pyrolysis – comparison of experimental measurements with model predictions, Energy & Fuels. Vol. 14. 2000. pp. 791–800.
http://dx.doi.org/10.1021/ef990176q

I. Milosavljevic, E. M. Suuberg, Cellulose thermal decomposition kinetics: global mass loss kinetics, Industrial and Engineering Chemistry Research. Vol. 34. 1995. pp. 1081–1091.
http://dx.doi.org/10.1021/ie00043a009

C. Di Blasi, Modeling intra- and extra-particle processes of wood fast pyrolysis, AICheE Journal. Vol. 48. 2002. pp. 2386–2397.
http://dx.doi.org/10.1002/aic.690481028

D. Mohan, C. U. Pittman Jr., P. H. Steele, Pyrolysis of wood/biomass for bio-oil: a critical review, Energy & Fuels. Vol. 20. 2006. pp. 848–889.
http://dx.doi.org/10.1021/ef0502397

R. Capart, L. Khezami, A. K. Burnham Assessment of various kinetic models for the pyrolysis of a microgranular cellulose, Thermochimica Acta. Vol. 417. 2004. pp. 79–89.
http://dx.doi.org/10.1016/j.tca.2004.01.029

F. J. Kilzer, A. Broido, Speculation on the nature of cellulose pyrolysis, Pyrodynamics. Vol. 2. 1965. pp. 151-163.
http://dx.doi.org/10.1007/978-3-0348-5775-8_25

W. S. L. Mok, M. J. Antal, Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis, Thermochimica Acta. Vol. 68. 1983. pp. 165–186.
http://dx.doi.org/10.1016/0040-6031(83)80222-6

G. C. Ramsey, N. A. McArthur, Building in the urban interface: lessons from the January 1994 Sydney bushfires. (Tasmania: Hobart, 1995).
http://dx.doi.org/10.1007/bf02573570

R. M. Hadden, S. Scott, Ch. Lautenberger, C. Fernandez-Pello, Ignition of Combustible Fuel Beds by Hot Particles: An Experimental and Theoretical Study, Fire Technology. Vol 47. 2011. pp. 341 – 355.
http://dx.doi.org/10.1007/s10694-010-0181-x

S. L. Manzello, T. G. Cleary, J. R. Shields, J. C. Yang, On the ignition of fuel beds by firebrands, Fire and Materials. Vol. 30. 2006. pp. 77–87.
http://dx.doi.org/10.1002/fam.901

S. L. Manzello, T. G. Cleary, J. R. Shields, J. C. Yang, Ignition of mulch and grasses by firebrands in wildland-urban interface fires, International Journal of Wildland Fire. Vol. 15. 2006. pp. 427–431.
http://dx.doi.org/10.1071/wf06031

S. L. Manzello, T. G. Cleary, J. R. Shields, A. Maranghides, W. Mell, J. C. Yang, Experimental investigation of firebrands: generation and ignition of fuel beds, Fire Safety Journal. Vol. 43. 2008. pp. 226–233.
http://dx.doi.org/10.1016/j.firesaf.2006.06.010

S. L. Manzello, J. R. Shields, T. G. Cleary, A. Maranghides, W. E. Mell, J. C. Yang, Y. Hayashi, D. Nii, T. Kurita, On the development and characterization of a firebrand generator, Fire Safety Journal. Vol. 43. 2008. pp. 258 – 268.
http://dx.doi.org/10.1016/j.firesaf.2007.10.001

V. Babrauskas Ignition handbook: principles and applications to fire safety engineering, fire investigation, risk management, and forensic science. (Fire Science Publishers, Issaquah, 2003).
http://dx.doi.org/10.1016/j.firesaf.2003.11.010

I. I. Gorban Fundamentals of the Mathematical Statistics of Probability Theory, Randomness and Hyper-randomness (Springer, 2017).
http://dx.doi.org/10.1007/978-3-319-60780-1_4

J. J. Vidal-Macua, M. Ninyerola, A. Zabala, C. Domingo-Marimon, X. Pons Factors affecting forest dynamics in the Iberian Peninsula from 1987 to 2012. The role of topography and drought, Forest Ecology and Management, Vol. 406, 2017. pp. 290-306.
http://dx.doi.org/10.1016/j.foreco.2017.10.011

M. D. Flannigan, Y. Bergeron, O. Engelmark, B. M. Wotton, Future wildfire in circumboreal forests in relation to global warming, Journal of Vegetation Science. Vol. 9. 1998. pp. 469–476.
http://dx.doi.org/10.2307/3237261

M.D. Flannigan, B.J. Stocks, B.M. Wotton Climate change and forest fires, Science of the Total Environment. Vol. 262. 2000. pp. 221–229.
http://dx.doi.org/10.1016/s0048-9697(00)00524-6

N. V. Baranovskiy The method of forecasting forest fire danger as the basis of a new state standard, Fire safety. N 4. 2007. pp. 80-84. (In Russian).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize