Open Access Open Access  Restricted Access Subscription or Fee Access

FINSTOOL: a New Universal Multi Boundary Conditions Tool for Steady and Unsteady Cases Fins Dimensioning


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i7.15038

Abstract


This paper describes a new tool developed in laboratory which is named FINSTOOL. This latter has been adopted as a powerful tool that helps the designer in fins dimensioning by focusing on the determination of temperature distribution along fins in both stationary and transient states (steady and unsteady ones). The mathematical model is based on the finite volumes’ numerical method for the three types of boundary conditions which can be applied to the fin’s four sides where 162 of the simulation cases represent the whole possible cases, that is why FINSTOOL is the first universal tool to treat fins. The present study supplies a new, powerful and convivial code to calculate temperature distribution along a longitudinal two-dimensional rectangular fin (the researcher’s case study). Further, a graphical interface has been integrated to enable easy manipulation as well as a post-processor treatment that made it possible to interpret the simulations’ results. The validation has been successfully accomplished in determining temperature distribution along a rectangular two-dimensional fin by considering both stationary and transient cases
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Fins; Tool; Boundary Limits; Steady Faces; Universal

Full Text:

PDF


References


Rigot G., Exchangers: Technological Evolution of Finned Exchangers, Rev. Refrigeration Practice & Air Conditioning 770 (1993) 30–34.

P. Malekzadeh, H. Rahideh, Two-dimensional nonlinear transient heat transfer analysis of variable section pin fins, Persian Gulf University Energy, Conversion and Management (2009) 916–922.
http://dx.doi.org/10.1016/j.enconman.2008.12.025

Look D.C. Jr., Two dimensional fin with no constant root temperature, Internat. J. Heat Mass Transfer 32 (1989) 977–980.
http://dx.doi.org/10.1016/0017-9310(89)90247-0

Yu Y. H., Chou Y. S., Hsiao C. C., A new approach to the transient conduction in a 2D rectangular fin, Internat. J. Heat Mass Transfer 32 (1989) 1657–1661.
http://dx.doi.org/10.1016/0017-9310(89)90048-3

Bergles A., Heat Transfer Enhancement, The Encouragement and Accommodation of High Heat Flow, J. Heat Transfer 119 (1997) 9-19.
http://dx.doi.org/10.1115/1.2824105

H. Yüncü, G. Anbar, An experimental investigation on performance of rectangular fins on a horizontal base in free convection heat transfer, Heat and Mass Transfer 33 (1998) 507–514.
http://dx.doi.org/10.1007/s002310050222

R. H. Yeh, S. P. Liaw, An exact solution for thermal characteristics of fins with power-law heat transfer coefficient, Int. Commun. Heat Mass Transfer 17 (1990) 317–330.
http://dx.doi.org/10.1016/0735-1933(90)90096-3

M. Dogan, M. Sivrioglu, Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel, Int. J. Heat Mass Transfer 53 (2010) 2149–2158.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.12.031

Razelos P., Imre K., The Optimum Dimension of Circular Fins with Variable Thermal Pparameters, J. Heat Transfer 102 (1980) 420–425.
http://dx.doi.org/10.1115/1.3244316

Aziz A., Na T. A., Periodic Heat Ttransfer in Fins with variable Thermal Parameters, Internat. J. Heat Mass Transfer 24 (1980) 1397–1404.
http://dx.doi.org/10.1016/0017-9310(81)90189-7

Zubair S. M., Al Garni A. Z., Nizami J. S., The Optimal Dimensions of Circular Fins with Variable Profile and Temperature-dependent Thermal Conductivity, Internat. J. Heat Mass Transfer 39 (1996) 3431–3440.
http://dx.doi.org/10.1016/0017-9310(96)00011-7

Han L. S., Lefkowitz S. G., Constant Cross-section Fin Efficiencies for Non-uniform Surface Heat Transfer Coefficients, ASME paper (1960) 60-WA-41.
http://dx.doi.org/10.1115/1.4024017

Unal H. C., Determination of the Temperature Distribution in an Extended Surface with a Non Uniform Heat Transfer Coefficient, Internat. J. Heat Mass Transfer 28 (1985) 2279–2284.
http://dx.doi.org/10.1016/0017-9310(85)90046-8

Unal H. C., An analytic study of boiling heat transfer from a fin, Internat. J. Heat Mass Transfer 30 (1987) 341– 349.
http://dx.doi.org/10.1016/0017-9310(87)90122-0

Laor K., Kalman H., Performance and optimum dimensions of differents cooling fins with a temperature dependent heat transfer coefficient, Internat. J. Heat Mass Transfer 39 (1996) 1993–2004

http://dx.doi.org/10.1016/0017-9310(95)00296-0

Sparrow E. M., Chyu M. K., Conjugate forced convection- conduction analysis of heat transfer in a plate fin, J. Heat Transfer 104 (1982) 204–206.
http://dx.doi.org/10.1115/1.3245055

Sparrow E. M., Acharya S., A natural convection with solution determined non-monotonically varying heat transfer coefficients, J. Heat Transfer 103 (1981) 218–225.
http://dx.doi.org/10.1115/1.3244444

Huang M. J., Chen C. K., Conjugate mixed convection and conduction heat transfer along a vertical circular pin, Internat. J. Heat Mass Transfer 28 523–529, 1985.
http://dx.doi.org/10.1016/0017-9310(85)90174-7

W. S., Rouleau W. T., The effects of internal heat generation on heat transfer in thin fins, Nuclear Sci. Energy. 7 400–406, 1960.
http://dx.doi.org/10.13182/nse60-a25737

Aziz A., Perturbation solution for convective fin with internal heat generation and temperature-dependent thermal conductivity, Internat. J. Heat Mass Transfer 20 1253–1255, 1977.
http://dx.doi.org/10.1016/0017-9310(77)90135-1

Unal H. C., Temperature distributions in fins with uniform and non uniform heat generation and non uniform heat transfer coefficient, Internat. J. Heat Mass Transfer 30 1465–1477, 1987.
http://dx.doi.org/10.1016/0017-9310(87)90178-5

Cotta R. M., Ramos R., Integral transforms in the two-dimensional non-linear formulation of longitudinal fins with variable profile, Internat. J. Numer. Methods Fluid Flow 8 (1) 27–42, 1998.
http://dx.doi.org/10.1108/09615539810197916

Huang L. J., Shah R. K., Assessment of calculation methods foe efficiency of straight fins of rectangular profile, Adv. Heat Exchanger Design Radiation Combustion ASME HTD 182 19–30, 1991.
http://dx.doi.org/10.1016/0142-727x(92)90042-8

Raseelo J. Moitsheki and Atish Rowjee, Steady Heat Transfer through a Two Dimensional Rectangular Straight Fin, Mathematical Problems in Engineering Volume Article ID 826819, 13 pages,2011.
http://dx.doi.org/10.1155/2011/826819

Haw-Long Lee, Numerical analysis of two dimensional pin fins with non-constant base heat flux, Energy Conversion and Management 46 881–892, 2005.
http://dx.doi.org/10.1016/j.enconman.2004.06.009

N. E. Khelalfa, T. Benabdallah, Decision Making Support System Applied to Fin’s Forms, International Review of Applied Engineering Research, Vol. 4, n. 1, pp. 27-43, 2014.

Fakir, M., Khatun, S., AbdulBari, H., Gimbun, J., Finite Element Based Comparison of One- and Two-Dimensional Heat Transfer Through Fins, (2017) International Journal on Numerical and Analytical Methods in Engineering (IRENA), 5 (3), pp. 70-75.

Chikurde, R., Kothavale, B., Sane, N., Dingare, S., Convection Heat Transfer Studies on Rectangular Fin Arrays with Different Surface Roughness, Perforations or Protrusions on Fins – a Review, (2018) International Review of Mechanical Engineering (IREME), 12 (1), pp. 97-106.
http://dx.doi.org/10.15866/ireme.v12i1.14141

Fakir, M., Khatun, S., Two-Dimensional Heat Transfer Through Long-Wide Insulated-Tip Thin Rectangular Fin: a Comparative Study, (2017) International Review of Aerospace Engineering (IREASE), 10 (3), pp. 167-173.
http://dx.doi.org/10.15866/irease.v10i3.12469

Fakir, M., Khatun, S., A Numerical Approach for Efficiency Analysis of Heat Distribution Through Fin, (2017) International Review of Aerospace Engineering (IREASE), 10 (6), pp. 337-344.
http://dx.doi.org/10.15866/irease.v10i6.13458


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize