Open Access Open Access  Restricted Access Subscription or Fee Access

Experimental Study on Swirling Jets


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i6.14936

Abstract


Experimental results on swirling flows are presented, contributing to the investigation and understanding of vortical flows close to vortex breakdown conditions. A swirling jet, issuing from a straight tube in a coaxial tube of larger diameter, is studied. Swirl is introduced by a rotating vane, located close to the jet outlet. Initial conditions, flow rates and swirl strengths can be parametrically controlled. In the present experiments two inner tube flow rates are combined with two inner jet swirls. The mean and turbulent flow fields are monitored on the axial central plane, based on measurements of all three velocity components, with stereoscopic 3D-PIV. Refractive index matching is utilized to eliminate optical distortions. A recirculation bubble stabilized downstream the exit of the swirl nozzle is the predominant coherent structure, formed due to the expansion of the swirling jet. The Reynolds number along with the swirl number are the nondimensional parameters used to interpret the measurements and to discuss the attributes of the flow field. The recirculation bubble topology is closely related to the rotation of the swirling jet, whereas the effect of the flowrate ιs of minor importance.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Swirling Flow; Vortex Breakdown; Coaxial Flow; Particle Image Velocimetry

Full Text:

PDF


References


A. H. Lefebvre, V. G. McDonell, Atomization and Sprays. Combustion: An International Series (2nd edition, CRC Press, Taylor & Francis, 2017).
http://dx.doi.org/10.1201/9781315120911

A. D. Rocha, A. C. Bannwarta, M. M. Ganzarollib, Numerical and experimental study of an axially induced swirling pipe flow, International Journal of Heat and Fluid Flow, Vol. 53, pp. 81-90, 2015.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2015.02.003

S. E. Rafiee, M. M. Sadeghiazad, Efficiency evaluation of vortex tube cyclone separator, Applied Thermal Engineering, Vol. 114, pp. 300-327, 2017.
http://dx.doi.org/10.1016/j.applthermaleng.2016.11.110

X. Wang, V. Yang, Supercritical Mixing and Combustion of Liquid-Oxygen/ Kerosene Bi-Swirl Injectors, Journal of propulsion and power, Vol. 33, n. 2, pp. 316-322, 2017.
http://dx.doi.org/10.2514/1.b36262

M. Sheikholeslami, M. Gorji-Bandpy, D. Domiri Ganji, Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices, Renewable and Sustainable Energy Reviews, Vol. 49, pp. 444-469, 2015.
http://dx.doi.org/10.1016/j.rser.2015.04.113

C. Zhixiang, Y. Wang, M. Duan, H. Zhu, Study of the vortex principle for improving the efficiency of an exhaust ventilation system, Energy and Buildings, Vol. 142, pp. 39-48, 2017.
http://dx.doi.org/10.1016/j.enbuild.2017.03.007

N. Peake, A. B. Parry, Modern Challenges Facing Turbomachinery Aeroacoustics, Annual Review of Fluid Mechanics, Vol. 44, pp. 227-248, 2012.
http://dx.doi.org/10.1146/annurev-fluid-120710-101231

S. Terhaar, T. G. Reichel, C. Schrödinger, L. Rukes, C. O. Paschereit, K. Oberleithner, Vortex Breakdown Types and Global Modes in Swirling Combustor Flows with Axial Injection, Journal of Propulsion and Power, Vol. 31, n. 1, pp. 219-229, 2015.
http://dx.doi.org/10.2514/1.b35217

D. G. Lilley, Swirl Flows in Combustion: A Review, AIAA journal, Vol. 15, n. 8, pp. 1063-1078, 1977.
http://dx.doi.org/10.2514/3.60756

O. Lucca-Negro, T. O' Doherty, Vortex breakdown: a review, Progress in Energy and Combustion Science, Vol. 27, n. 4, pp. 431-481, 2001.
http://dx.doi.org/10.1016/s0360-1285(00)00022-8

A. K. Gupta, D. G. Lilley, N. Syred, Swirl Flows, (1st Edition, Abacus Press, Tunbridge Wells, England, 1984).

D. H. Peckham, S. Atkinson, Preliminary results of low speed wind tunnel tests on a Gothic wing of aspect ratio 1.0, Royal Aircraft Establishment, Technical note AERO, Vol. 2504, 1957.

S. Leibovich, The Structure of Vortex Breakdown, Annual Review of Fluid Mechanics, Vol. 10, pp. 221-246, 1978.
http://dx.doi.org/10.1146/annurev.fl.10.010178.001253

J. B. Nuttall, Axial Flow in a Vortex, Natural, Vol. 172, pp. 582-583, 1953.
http://dx.doi.org/10.1038/172582a0

J. K. Harvey, Some observations of the vortex breakdown phenomenon, J. Fluid Mech, Vol. 14, n. 4, pp. 585-592, 1962.
http://dx.doi.org/10.1017/s0022112062001470

M. G. Hall, Vortex breakdown, Annual Review of Fluid Mechanics, Vol. 4, pp. 195-218, 1972.
http://dx.doi.org/10.1146/annurev.fl.04.010172.001211

R. Spall, T. Gatski, C. Grosch, A criterion for vortex breakdown, Phys. Fluids, Vol. 30, n. 11, pp. 3434-3440, 1987.
http://dx.doi.org/10.1063/1.866475

M. Escudier, Vortex breakdown: Observations and explanations, Progress in Aerospace Sciences, Vol. 25, n. 2, pp. 189-229, 1988.
http://dx.doi.org/10.1016/0376-0421(88)90007-3

A. Giannadakis, K. Perrakis, Th. Panidis, A swirling jet under the influence of a coaxial flow, Experimental Thermal and Fluid Science, Vol. 32, n. 8, pp. 1548-1563, 2008.
http://dx.doi.org/10.1016/j.expthermflusci.2008.04.010

T. Ivanic, E. Foucault, J. Pecheux, Dynamics of swirling jet flows, Experiments in Fluids, Vol. 35, n. 4, pp. 317-324, 2003.
http://dx.doi.org/10.1007/s00348-003-0646-5

R. J. Adrian, Particle-Imaging Techniques for Experimental Fluid Mechanics, Annual Review of Fluid Mechanics, Vol. 23, pp. 261-304, 1991.
http://dx.doi.org/10.1146/annurev.fluid.23.1.261

A. K. Prasad, Stereoscopic particle image velocimetry, Experiments in Fluids, Vol. 29, n. 2, pp. 103-116, 2000.
http://dx.doi.org/10.1007/s003480000143

A. Melling, Tracer particles and seeding for particle image velocimetry, Measurement Science and Technology, Vol. 8, n. 12, pp. 1406-1416, 1997.
http://dx.doi.org/10.1088/0957-0233/8/12/005

R. Budwig, Refractive Index Matching Methods for Liquid Flow Investigations, Experiments in Fluids, Vol. 17, n. 5, pp. 350-355, 1994.
http://dx.doi.org/10.1007/bf01874416

S. Wiederseiner, N. Andreini, G. Epely-Chauvin, C. Ancey, Refractive-index and density matching in concentrated particle suspensions: a review, Experiments in Fluids, Vol. 50, n. 5, pp. 1183-1206, 2011.
http://dx.doi.org/10.1007/s00348-010-0996-8

A. J. Fitzgerald, K. Hourigan, M. C. Thompson, Towards a Universal Criterion for Predicting Vortex Breakdown in Swirling Jets, 15th Australasian Fluid Mechanics Conference, The University of Sydney, Sydney, Australia, 2004.

Th. Panidis, R. Schwab, A. Pollard, The role of vorticity in the near field development of sharp-edged, rectangular, wall jets, International Journal of Heat and Fluid Flow, Vol. 67, pp. 3-22, 2017.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2017.06.010

Salim, W., Ahmed, S., Prediction of Turbulent Swirling Flow in a Combustor Model, (2016) International Review of Aerospace Engineering (IREASE), 9 (2), pp. 43-50.
http://dx.doi.org/10.15866/irease.v9i2.9562

Abdulwahid, A., Lazim, T., Saat, A., Jaafar, M., Kareem, Z., Experimental Thermal Field Measurements of Film Cooling with Twisted Holes, (2015) International Review of Aerospace Engineering (IREASE), 8 (3), pp. 86-94.
http://dx.doi.org/10.15866/irease.v8i3.6124

Abdulwahid, A., Lazim, T., Saat, A., Kareem, Z., Thermal Investigations on the Mixing Flow of Film Cooling by Twisted Holes, (2015) International Journal on Energy Conversion (IRECON), 3 (3), pp. 88-94.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize