Open Access Open Access  Restricted Access Subscription or Fee Access

Physical and Thermal Properties of Cellulose Nanofibers (CNF) Extracted from Agave Cantala Fibers Using Chemical-Ultrasonic Treatment


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i7.14931

Abstract


Cellulose nanofibers (CNF) have been extracted from agave cantala fibers by using chemical-ultrasonic treatment. The raw fibers have been subjected to alkali and bleaching treatments followed by acid-hydrolysis. The characteristics of cantala fibers such as their morphology through scaning electron microscope (SEM), Transmission electron micrsoscop (TEM), fourier transform analysis (FTIR), x-ray diffraction (XRD) and thermogravimetric analysis (TGA) have been analyzed. The CNF extracted from cantala fiber had uniform diameters of 45-50 nm with 800-2000 nm in lengths. Change in the FTIR spectra of CNF indicated that hemicellulose and lignin were significantly removed during chemical treatment. The crystallinity index of CNF increased when chemical treatment followed by optimum-time ultrasonic treatment was applied. The TGA discovered that CNF was stable until 271 oC. Based on the properties, the CNF would be suitable for reinforcement of nanocomposites.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Cellulose Nanofibers; Agave Cantala; Acid Hydrolysis; Ultrasonic Treatment

Full Text:

PDF


References


Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., Sheltami, R. M, Effects Of Hydrolysis Conditions On The Morphology, Crystallinity, And Thermal Stability Of Cellulose Nanocrystals Extracted From Kenaf Bast Fibers, Cellulose, 19 (3), 855-866, 2012.
http://dx.doi.org/10.1007/s10570-012-9684-6

Masoodi, R., El-Hajjar, R. F., Pillai, K. M., Sabo, R, Mechanical Characterization Of Cellulose Nanofiber And Bio-Based Epoxy Composite, Materials & Design (1980-2015), 36:570-576, 2012.
http://dx.doi.org/10.1016/j.matdes.2011.11.042

Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., Hai, Y. 2011. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83( 4):1804-1811.
http://dx.doi.org/10.1016/j.carbpol.2010.10.040

Yuhazri, M., Sihombing, H. 2010. A comparison process between vacuum infusion and hand lay-up method toward kenaf/polyester composite. In International Journal of Basic & Applied Sciences. Vol: 10 Issue 3.

Beck, S., Bouchard, J., Berry, R. 2010. Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules, 12 (1):167-172.
http://dx.doi.org/10.1021/bm1010905

Jackson, J. K., Letchford, K., Wasserman, B. Z., Ye, L., Hamad, W. Y., Burt, H. M. 2011. The use of nanocrystalline cellulose for the binding and controlled release of drugs. International journal of nanomedicine, 6:321.
http://dx.doi.org/10.2147/ijn.s16749

Nogi, M., Iwamoto, S., Nakagaito, A. N., Yano, H. 2009. Optically transparent nanofiber paper. Advanced materials, 21 (16):1595-1598.
http://dx.doi.org/10.1002/adma.200803174

Sehaqui, H., Salajková, M., Zhou, Q., & Berglund, L. A. 2010. Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter, 6 (8):1824-1832.
http://dx.doi.org/10.1039/b927505c

Santoso Budi. 2009, Peluang pengembangan agave sebagai sumber serat alam, Perspektif 8.2 : 84-95.

Chakraborty, A., Sain, M., Kortschot, M. 2005. Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung, 59 (1):102-107.
http://dx.doi.org/10.1515/hf.2005.016

Iwamoto, S., Abe, K., Yano, H. 2008. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules, 9 (3):1022-1026.
http://dx.doi.org/10.1021/bm701157n

Nakagaito, A. N., Yano, H. 2004. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Applied Physics A, 78 (4):547-552.
http://dx.doi.org/10.1007/s00339-003-2453-5

Tonoli, G. H. D., Teixeira, E. M., Corrêa, A. C., Marconcini, J. M., Caixeta, L. A., Pereira-da-Silva, M. A., Mattoso, L. H. C. 2012. Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydrate polymers, 89 (1): 80-88.
http://dx.doi.org/10.1016/j.carbpol.2012.02.052

Lavoratti, A., Scienza, L. C., Zattera, A. J. 2016. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate polymers, 136:955-963.
http://dx.doi.org/10.1016/j.carbpol.2015.10.008

Qing, Y., Sabo, R., Zhu, J. Y., Agarwal, U., Cai, Z., Wu, Y. 2013. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate polymers, 97 (1): 226-234.
http://dx.doi.org/10.1016/j.carbpol.2013.04.086

Lengowski, E. C., de Muniz, G. I. B., Nisgoski, S., Magalhães, W. L. E. 2013. Cellulose acquirement evaluation methods with different degrees of crystallinity. Scientia Forestalis, 41 (98):185-194.

Corrêa, A. C., de Morais Teixeira, E., Pessan, L. A., Mattoso, L. H. C. 2010. Cellulose nanofibers from curaua fibers. Cellulose, 17 (6):1183-1192.
http://dx.doi.org/10.1007/s10570-010-9453-3

Chemar J. Huntley, Kristy D. Crews, Mohamed A. Abdalla, Albert E. Russell, and Michael L. Curry, “Influence of Strong Acid Hydrolysis Processing on the Thermal Stability and Crystallinity of Cellulose Isolated from Wheat Straw,” International Journal of Chemical Engineering, vol. 2015, Article ID 658163, 11 pages, 2015.
http://dx.doi.org/10.1155/2015/658163

Kumar, A., Negi, Y. S., Choudhary, V., Bhardwaj, N. K. 2014. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2 (1):1-8.

Brito, B. S., Pereira, F. V., Putaux, J. L., Jean, B. 2012. Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose, 19 (5):1527-1536.
http://dx.doi.org/10.1007/s10570-012-9738-9
Beck-Candanedo, S., Roman, M., Gray, D. G. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6 (2):1048-1054.
http://dx.doi.org/10.1021/bm049300p

Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., Gloaguen V,, Krausz, P. 2008. Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing, 39 (3):514-522.
http://dx.doi.org/10.1016/j.compositesa.2007.12.001

Oksman, K., Etang, J. A., Mathew, A. P., Jonoobi, M. 2011. Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass and bioenergy, 35 (1):146-152.
http://dx.doi.org/10.1016/j.biombioe.2010.08.021

Nosbi, N., Akil, H. M., Ishak, Z. A. M., Bakar, A. A. 2011. Behavior of kenaf fibers after immersion in several water conditions. BioResources, 6 (2):950-960.

Jonoobi, M., Khazaeian, A., Tahir, P. M., Azry, S. S., Oksman, K. 2011. Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose, 18 (4):1085-1095.
http://dx.doi.org/10.1007/s10570-011-9546-7

Das, M., Chakraborty, D. (2006). Influence of alkali treatment on the fine structure and morphology of bamboo fibers. Journal of Applied Polymer Science, 102 (5):5050-5056.
http://dx.doi.org/10.1002/app.25105

Sakurada, I., Nukushina, Y., Ito, T. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science Part A: Polymer Chemistry, 57 (165):651-660.
http://dx.doi.org/10.1002/pol.1962.1205716551

Abdal-Hay, A., Suardana, N. P. G., Choi, K. S., Lim, J. K. 2012. Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. International Journal of Precision Engineering and Manufacturing, 13 (7):1199-1206.
http://dx.doi.org/10.1007/s12541-012-0159-3

Movva, M., Kommineni, R. 2017. Effect of Green Gram Husk Nanocellulose on Banana Fiber Composite. Journal of Natural Fibers, 1-13.
http://dx.doi.org/10.1080/15440478.2017.1414658

Sosiati, H., Muhaimin, M. M., Wijayanti, D. A., Triyana, K. 2015. Microscopic characterization of cellulose nanocrystals isolated from sisal fibers. In Materials Science Forum Vol. 827
http://dx.doi.org/10.4028/www.scientific.net/msf.827.174

Segal, L. G. J. M. A., Creely, J. J., Martin Jr, A. E., Conrad, C. M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29 (10):786-794.
http://dx.doi.org/10.1177/004051755902901003

Siqueira, G., Bras, J., Dufresne, A. 2010. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers, 2(4): 728-765.
http://dx.doi.org/10.3390/polym2040728

Yudhanto, F., Jamasri., & Rochardjo, H.S. 2018. Application of taguchi method for selection parameter bleaching treatments against mechanical and physical properties of agave cantala fiber. applications. IOP Conference Series: Materials Science and Engineering, 352(1): 012002. IOP Publishing.
http://dx.doi.org/10.1088/1757-899x/352/1/012002

Supriya Baburao, C., Rohith Renish, R., Chandrakant Anna, S., Rajendra Rayappa, K., Application of an Ecofriendly Heterogeneous Catalyst (CaO) for Synthesis of Biodiesel and its Characterization on VCR Engine, (2015) International Review of Mechanical Engineering (IREME), 9 (3), pp. 314-323.
http://dx.doi.org/10.15866/ireme.v9i3.6110

Anwar, A., Osman, M., Influence of Simulated Space Hazards on Polyimide ArtilonTM Type Used in Space Applications, (2016) International Review of Aerospace Engineering (IREASE), 9 (6), pp. 195-199.
http://dx.doi.org/10.15866/irease.v9i6.10041


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize