Open Access Open Access  Restricted Access Subscription or Fee Access

Efficiency and Sustainability Improvement of Vapor Compression Configurations and a H2O/LiBr Absorption System Through Thermodynamic Analysis and Parameter Variation


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i6.14777

Abstract


The need for more efficient and sustainable refrigeration systems has promoted the development of new configurations. Subcooling have shown to improve the coefficient of performance whereas thermal energy driven configurations allow renewable sources to be employed. In this study thermodynamic models have been developed for simple, suction line heat exchanger, integrated and dedicated subcooling vapor compression systems using R-134a as the primary refrigerant and for a single-stage absorption refrigeration system with H2O/LiBr. The variation exhibited by the performance of the refrigeration systems is examined at various operating conditions finding that COP increases as condenser temperature decreases and evaporator temperature increases; high COP values are obtained with increasing generator temperature and LiBr concentration in the case of the absorption system. Low and zero emissions associated to subcooling strategies and absorption systems, due to the higher efficiencies and renewable character of the energy source respectively, were obtained when comparing the environmental impact.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Subcooling; Coefficient of performance; CO2 Emissions; Absorption; Parameters

Full Text:

PDF


References


G. Venkatarathnam and S. S. Murthy, Refrigerants for Vapour Compression Refrigeration Systems, Resonance vol. 17, no. 2 February, pp. 139–162, 2012.
http://dx.doi.org/10.1007/s12045-012-0015-x

J. S. Brown and P. A. Domanski, Review of alternative cooling technologies, Appl. Therm. Eng., vol. 64, no. 1–2, pp. 252–262, 2014.
http://dx.doi.org/10.1016/j.applthermaleng.2013.12.014

C. J. L. Hermes, Alternative evaluation of liquid-to-suction heat exchange in the refrigeration cycle cycle frigorifique, Int. J. Refrig., vol. 36, no. 8, pp. 2119–2127, 2013.
http://dx.doi.org/10.1016/j.ijrefrig.2013.06.007

H. Cho, C. Ryu, and Y. Kim, Cooling performance of a variable speed CO 2 cycle with an electronic expansion valve and internal heat exchanger, Int. J. Refrig., vol. 30, pp. 664–671, 2007.
http://dx.doi.org/10.1016/j.ijrefrig.2006.10.004

H. Cho, H. Lee, and C. Park, Performance characteristics of an automobile air conditioning system with internal heat exchanger using refrigerant R1234yf, Appl. Therm. Eng., vol. 61, no. 2, pp. 563–569, 2013.
http://dx.doi.org/10.1016/j.applthermaleng.2013.08.030

B. A. Qureshi and S. M. Zubair, Mechanical sub-cooling vapor compression systems: Current status and future directions, Int. J. Refrig., vol. 36, no. 8, pp. 2097–2110, 2013.
http://dx.doi.org/10.1016/j.ijrefrig.2013.07.026

J. Khan and S. M. Zubair, Design and rating of an integrated mechanical-subcooling vapor-compression refrigeration system, Energy Convers. Manag., vol. 41, pp. 1201–1222, 2000.
http://dx.doi.org/10.1016/s0196-8904(99)00169-7

A. J. Hamad, Performance Investigation of Vapor Compression Refrigeration System with Integrated Mechanical Sub-Cooling Circuit Using Hydrocarbon Blends,”Diyala J. Eng. Sci., vol. 9, no. 1, pp. 1–17, 2016.

R. Llopis, R. Cabello, D. Sanchez, E. Torrella, Energy improvements of CO 2 transcritical refrigeration cycles using dedicated mechanical subcooling, Int. J. Refrig., vol. 55, pp. 129–141, 2015.
http://dx.doi.org/10.1016/j.ijrefrig.2015.03.016

C. Somers, A. Mortazavi, Y. Hwang, R. Radermacher, P. Rodgers, and S. Al-Hashimi, Modeling water/lithium bromide absorption chillers in ASPEN Plus, Appl. Energy, vol. 88, no. 11, pp. 4197–4205, 2011.
http://dx.doi.org/10.1016/j.apenergy.2011.05.018

J. Labus, J. C. Bruno, and A. Coronas, Performance analysis of small capacity absorption chillers by using different modeling methods, Appl. Therm. Eng., vol. 58, no. 1–2, pp. 305–313, 2013.
http://dx.doi.org/10.1016/j.applthermaleng.2013.04.032

A. A. V. Ochoa, J. C. C. Dutra, J. R. G. Henríquez, C. A. C. dos Santos, and J. Rohatgi, The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O, Energy Convers. Manag., vol. 136, pp. 270–282, 2017.
http://dx.doi.org/10.1016/j.enconman.2017.01.020

B. A. Qureshi and S. M. Zubair, The effect of refrigerant combinations on performance of a vapor compression refrigeration system with dedicated mechanical sub-cooling, Int. J. Refrig., vol. 35, no. 1, pp. 47–57, 2011.
http://dx.doi.org/10.1016/j.ijrefrig.2011.09.009

DuPont, Thermodynamic properties of DuPont Suva HFC-134 (1,1,12-tetrafluoroethane). 2004.

B. A. Qureshi and S. M. Zubair, Cost optimization of heat exchanger inventory for mechanical subcooling refrigeration cycles, Int. J. Refrig., vol. 36, no. 4, pp. 1243–1253, 2013.
http://dx.doi.org/10.1016/j.ijrefrig.2013.02.011

DuPont, Thermodynamic properties of DuPont Suva 407C refrigerant (R-407C). 2004.

S. A. Klein, D. T. Reindl, and K. Brownell, Refrigeration system performance using liquid-suction heat exchangers, Int. J. Refrig., vol. 23, pp. 588–596, 2000.
http://dx.doi.org/10.1016/s0140-7007(00)00008-6

M. M. Talbi and B. Agnew, Exergy analysis: An absorption refrigerator using lithium bromide and water as the working fluids, Appl. Therm. Eng., vol. 20, no. 7, pp. 619–630, 2000.
http://dx.doi.org/10.1016/s1359-4311(99)00052-6

O. Kaynakli and R. Yamankaradeniz, Thermodynamic analysis of absorption refrigeration system based on entropy generation, Curr. Sci., vol. 92, no. 4, pp. 472–479, 2007.

UPME, Calculadora de emisiones, [Online]. Available: http://www.upme.gov.co/calculadora_emisiones/aplicacion/calculadora.html.

UPME, Plan de acción inidcativo de eficiencia energética PAI-PROURE 2017-2022,” 2017.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize