Open Access Open Access  Restricted Access Subscription or Fee Access

Study of Damage Phenomenon of Thermoplastic Composite: Application in the Automobile Industry


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i5.22165

Abstract


In this paper, a numerical study on the different parameters that characterize the phenomenon of rupture of thermoplastic materials reinforced with long glass fibers has been made. The material under investigation is polypropylene reinforced with 70% glass fibers (PP-GF70), which has been chosen for its mechanical and thermal properties. The effort done in this research is to use the Johnson-Cook failure law as a numerical model to model the failure of this material, with the goal of identifying the damage coefficients Di (i=1,...,5). The methodology used is to simulate the tensile test by comparing the specimen’s numerical behavior to the experimental data in order to plot the curves of the strain at failure as a function of triaxiality, taking strain rate, and temperature into consideration. The goal is to find and optimize these factors, so that numerically reproducing the same fractures as in the test is possible. The research reported in this study aims to include this new composite generation into crash simulations for car development.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Johnson-Cook Rupture Law; Triaxiality; Modelling; PP-GF70; Crash

Full Text:

PDF


References


A. Al-maghribi, Behavior of short fiber composite materials: application to low speed impact, University of Toulouse, France, 2008.

A. Mokhtari, M. Ouldouali, N. Tala-Ighil, Damage modelling in thermoplastic composites reinforced with natural fibres under compressive loading, Int j damage mech, 24(8): 1239-1260, 2015.
https://doi.org/10.1177/1056789515573900

S. E. Akrout, N. Mhaiti, M. Radouani and B. El Fahime, Modeling and Simulation of a Vehicle Crash Test, ASTESJ, Vol 6: 937-946, 2021.
https://doi.org/10.25046/aj0601103

A. Keshavarz, R. Ghajar, Giuseppe Mirone, A new experimental failure model based on triaxiality factor and Lode angle for X-100 pipeline steel, International Journal of Mechanical Sciences, Vol 80: 175-182, 2014.
https://doi.org/10.1016/j.ijmecsci.2014.01.007

M. Mahdad, A. Ait Saada, I. Belaidi, A. Mokhtari, A. Benidir, Damage Modelling in Thermoplastic Laminates Reinforced with Steel and Glass Fibres under Quasi-Static Indentation Loading at Low-Velocity, Advanced Composites Letters, 27(6), 2018.
https://doi.org/10.1177/096369351802700606

Q. Peng, S. Xiaochen, G. Xiaojun, M. Yidong, J. Yuxi, Effect of interlaminar toughness on the low-velocity impact damage in composite laminates, Polymers Composites, 37(4): 1085-1092, 2016.
https://doi.org/10.1002/pc.23270

A. El Hami, B. Radi, Dynamics of Large Structures and Inverse Problems, Mathematical and Mechanical Engineering Set, (Volume 5, WILEY-ISTE, 2017). ISBN: 978-1-848-21952-6.

N. Li, P. H. Chen and Q.Ye, A damage mechanics model for low-velocity impact damage analysis of composite laminates, The Aeronautical Journal, 121(1238): 515-532, 2017.
https://doi.org/10.1017/aer.2017.6

M. Eftekhari, A. Fatemi, Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects, Polymer Testing, Vol 51: 151-164, 2016.
https://doi.org/10.1016/j.polymertesting.2016.03.011

M. R. Sanjay, G. R. Arpitha, M.G. Vasundhara, B. Yogesha, Study on Mechanical Characteristics of Unidirectional Sisal/Glass Fiber Reinforced Polyester Hybrid Composites, IJSR, Vol 3: 2319-7064, 2014.
https://www.ijsr.net/get_abstract.php?paper_id=2015406

H. Liu, J. Liu, Y. Ding, J. Zhou, X. Kong, L. T. Harper, B. R. K. Blackman, B. Falzon and J. Dear, Modelling damage in fibre-reinforced thermoplastic composite laminates subjected to threepoint-bend loading, Composite Structures, 236: 111889, 2020.
https://doi.org/10.1016/j.compstruct.2020.111889

W. Tan, B. G. Falzon, Modelling the crush behaviour of thermoplastic composites, Composites Science and Technology, 134: 57-71, 2016.
https://doi.org/10.1016/j.compscitech.2016.07.015

Pulungan, D. Ardiansyah, Predictive Micro- and Meso-Mechanics Damage Models for Continuous Fiber-Reinforced Thermoplastic Composites, King Abdullah University of Science and Technology, Kingdom of Saudi Arabia, 2019.
http://hdl.handle.net/10754/660428

J. F. Chen, E. V. Morozov and K. Shankar, Plastic damage model for progressive failure Analysis of composite structures, 18th ICCM, Australia, 2011.

M. Alemi-Ardakani, A. S. Milani and S. Yanna copoulos, On Complexities of Impact Simulation of Fiber Reinforced Polymer Composites: A Simplified Modeling Framework, The Scientific World Journal, 2014.
https://doi.org/10.1155/2014/382525

B. Radi, A. El Hami, Material Forming Processes, Simulation, Drawing, Hydroforming and Additive Manufacturing, (1, WILEY-ISTE, 2016). ISBN: 978-1-848-21947-2.
https://doi.org/10.1002/9781119332718

B.N. Fedulov, A.A. Safonov, M.M. Kantor, S.V. Lomov, Modelling of thermoplastic polymer failure in fiber reinforced composites, Composite Structures, Vol 163: 293-301, 2017.
https://doi.org/10.1016/j.compstruct.2016.11.091

A. Bechara, S. Goris, A. Yanev, D. Brands, and T. Osswald, Novel modeling approach for fiber breakage during molding of long fiber-reinforced thermoplastics, Physics of Fluids 33: 073318, 2021.
https://doi.org/10.1063/5.0058693

D. H. Kim, K. H. Jung, I. G. Lee, H. J. Kim, H. S. Kim, Three-dimensional progressive failure modeling of glass fiber reinforced thermoplastic composites for impact simulation, Composite Structures, Vol 176: 757-767, 2017.
https://doi.org/10.1016/j.compstruct.2017.06.031

J. Striewe, C. Reuter, K. H. Sauerland, T. Tröster, Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites, Thin-Walled Structures, Vol 123: 501-508, 2018.
https://doi.org/10.1016/j.tws.2017.11.011

H. Böhm, H. Zhang, B. Gröger, A. Hornig, M. Gude, Characterization and Numerical Modelling of Through-Thickness Metallic-Pin-Reinforced Fibre/Thermoplastic Composites under Bending Loading, J. Compos. Sci, 4: 188, 2020.
https://doi.org/10.3390/jcs4040188

P. R. Marur, S. Srinivas, A reduced-order finite element model for the simulation of automotive side structure crash response. Int. J. Vehicle Structures & Systems, Vol 13, (issue 2): 211-218, 2008.
https://doi.org/10.4273/ijvss.3.2.06

C. Prus, R. Vinuesa, P. Schlatter, E. Tembras, E. Mestres and J. P. Berro Ramirez, Impact simulation and optimization of elastic fuel tanks reinforced with exoskeleton for aerospace applications, International Journal of Crashworthiness, Vol. 22, (issue 3): 271-293, January 2017.
https://doi.org/10.1080/13588265.2016.1248806

J. P. Bobineau, L. Morançay, AMS and Multi-Domain method in RADIOSS, 11 ecolloque national en calcul des structures, CSMA, Giens, France, May 2013.

Y. Bao, T. Wierzbicki, On the cut-off value of negative triaxiality for fracture, Engineering Fracture Mechanics, 72(7): 1049-1069, 2005.
https://doi.org/10.1016/j.engfracmech.2004.07.011

J. Borkovec, Computer simulation of material separation process, Institute of Thermomechanics, Czech Republic, 2008.

A. Banerjee, S. Dhar, S. Acharyya, D. Datta and N. Nayak, Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel, Materials Science and Engineering: A, 2015.
https://doi.org/10.1016/j.msea.2015.05.073

Y. Zhanga, J. C. Outeirob and T. Mabroukic, On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting, In Proceedings of the 15th CIRP Conference on Modelling of Machining Operations, Karlsruhe, 112-117, Germany, 2015.
https://doi.org/10.1016/j.procir.2015.03.052

M. Murugesan, S. Lee, D. Kim, Y.H. Kang and N. Kim, A Comparative Study of Ductile Damage Models Approaches for Joint Strength Prediction in Hot Shear Joining Process, Procedia Eng, 207: 1689-1694, 2017.
https://doi.org/10.1016/j.proeng.2017.10.923

E. Buzyurkina, I.L. Gladkyb and E.I. Krausa, Determination and verification of Johnson-Cook model parameters at high-speed deformation of titanium alloys, Aerosp. Sci. Technol, 45: 121-127, 2015.
https://doi.org/10.1016/j.ast.2015.05.001

Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast, 24(6): 1071-1096, 2008.
https://doi.org/10.1016/j.ijplas.2007.09.004

Y. Bao, Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios, Engineering Fracture Mechanics, 72(4): 505-522, 2005.
https://doi.org/10.1016/j.engfracmech.2004.04.012

ASTM D3039 Tensile Properties of Polymer Matrix Composite Materials, ASTM D3039, U.S.A, 2016.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize