Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling the Dynamic Load of Loader Cranes Metal Structure with Excessive Backlashes in Sections Hinge Joints


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i2.14626

Abstract


The research objective presented in this paper is working out the mathematic model and methods of computer modeling the performance of hydraulic loader cranes with excessive backlashes in sections hinge joints. The mechanism for generating the additional impact load in joints is illustrated. It is based on analyzing the hinge pin displacement within the backlash and its periodic collisions with the limiting elements of a hinge joint. This method allows evaluating the degree of influence of the backlash value on the changes in the qualitative characteristics of the dynamic load of the cranes metal structure and the motion parameters of the conveying load.  The computer modeling of the loader crane dynamics in its turning motion was performed. The excessive backlash at the point of connection of a load-handling device and a boom was analyzed. The comparative evaluation of the dynamic load of the crane metal structure was performed for two controlling cases: 1) the absence of a backlash; 2) the presence of a backlash (the backlash variation range is 0…2 mm). While the crane is in operation, some excessive backlashes may result in increasing the dynamic load of loader cranes metal structure twofold and more.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Backlash; Dynamic Load; Impact; Hinge Joint; Loader Crane

Full Text:

PDF


References


R. G. Garby, IPT's Crane and Rigging Handbook: mobile-EOT-tower Cranes (IPT Publishing and Training Ltd, 2005).

A. V. Lagerev, A. A. Milto, I. A. Lagerev, Dynamic and Mechanical Analysis of Hydraulic Crane-manipulating Installations of Mobile Machines (Bryanskiy Gosudarstvennyy Universitet, 2015).

I. A. Lagerev, Modeling of Work Processes in Manipulation Systems for Mobile Multi-purpose Transport and Technological Machines and Complexes (RIO BGU, 2016).

I. A. Lagerev, Comparative Analysis of Hydraulic Crane-manipulating Installations Transport and Technological Machines and Industrial Robots Hydraulic Manipulators, Nauchno-tekhnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta, n.3, pp. 16-49, 2016.

M. P. Aleksandrov, D. N. Reshetov, Lifting-transport Mashines (Mashinostroenie, 1987).

V. V. Suglobov, V. A. Mikheev, I. A. Nefedov, P. V. Shikov, Rise of Operating Reliability and Expansion of Technological Possibilities Shifting Machines of Marine Ports, Izvestiya TGU. Tekhnicheskie nauki, n.2, pp. 253-259, 2009.

P. J. Blau, Friction Science and Technology: from Concepts to Applications (CRC Press, Inc., 2009).

RD 10-112-2-09. Methodological Recommendations on Expert Inspection Lifting Machines. Part 2. Jib Cranes of General Purpose and Cranes-Manipulators (Rostekhnadzor, 2009).

A. V. Lagerev, I. A. Lagerev, Dynamic Analysis of a Hydraulic Three-tier Crane-Manipulator, Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta, n.3, pp. 9-16, 2011.

M. S. Komarov, Dynamics of Mechanisms and Machines (Mashinostroenie, 1969).

I. A. Lagerev, A. V. Lagerev, Dynamics Three-tier Hydraulic Crane-manipulators (Bryanskiy Gosudarstvennyy Tekhnicheskii Universitet, 2012).

R. Siebert, P. Betsch, Optimal Control of an Overhead Crane within Energy-momentum Conversing Method, PAMM Proc. Appl. Math. Mech., n.10, pp. 65-66, 2010.
http://dx.doi.org/10.1002/pamm.201010025

J. J. Da Cruz, F. Leonardi, Minimum-time Anti-swing Motion Planning of Cranes Using Linear Programming, Optim. Control Appl. Meth., n.10, pp. 10-21, 2012.
http://dx.doi.org/10.1002/oca.2016

M. Shahinpoor, A Robot Engineering Textbook (Harper & Row, Pablishers, Inc., 1987).

A. V. Lagerev, I. A. Lagerev, A. A. Milto, Universal Technique for Stress Analysis of Beam Elements of Articulating Cranes in Case of Dynamic Load, Vestnik Bryanskogo gosudarstvennogo universiteta, n.4, pp. 21-26, 2013.

Lagerev, A., Lagerev, I., Milto, A., Tool for Preliminary Dynamics and Stress Analysis of Articulating Cranes, (2014) International Review on Modelling and Simulations (IREMOS), 7 (4), pp. 644-652.
http://dx.doi.org/10.15866/iremos.v7i4.2045

Lagerev, A., Lagerev, I., Milto, A., Preliminary Dynamics and Stress Analysis of Articulating Non-Telescoping Boom Cranes Using Finite Element Method, (2015) International Review on Modelling and Simulations (IREMOS), 8 (2), pp. 223-226.
http://dx.doi.org/10.15866/iremos.v8i2.5713

J. M. Hollebrach, A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation, IEEE Trans. Syst. Man Cybern., 1980, n.10, pp. 730-736.
http://dx.doi.org/10.1109/tsmc.1980.4308393

M. Emami, A. Goldenberg, I. Turksen, Fuzzy-Logic Dynamics Modeling of Robot Manipulators, Proc. of the 1998 IEEE Int. Conf. on Robotics & Automation, Leuven, Belgium, 1998, pp. 563-578.
http://dx.doi.org/10.1109/robot.1998.680719

G. Rodriguez, A. Jain, K. Kreutz-Delgado, A Spatial Operator Algebra for Manipulator Modelling and Control, Int. J. Robotics Research, Vol. 10, n.4, pp. 371-381, 1991.
http://dx.doi.org/10.1177/027836499101000406

F. C. Park, J. Choi, S. R. Ploen, A Li Group Formulation of Robot Dynamics, Int. J. of Robotics Research, Vol.14, n.6, pp. 126-136, 1995.
http://dx.doi.org/10.1177/027836499501400606

R. Featherstone, D. Orin, Robot Dynamics: Equations and Algorithms, Proc. of the 2000 IEEE Int. Conf. on Robotics & Automation, San Francisco, 2000, pp. 787-799.
http://dx.doi.org/10.1109/robot.2000.844153

A. V. Vershinskii, I. A. Lagerev, A. N. Shubin, A. V. Lagerev, Calculation of Metal Constructions of Lifting-Transport Machines by Finite Element Method (Bryanskiy Gosudarstvennyy Universitet, 2015).

I. A. Lagerev, Simulation of Stress-strain State in Crane-manipulator of Pipeline Welding Machine, Izvestiya vyshikh uchebnykh zavedeniy. Mashinostroenie, n.4, pp. 29-36, 2011.

I. A. Lagerev, A. A. Milto, A. V. Lagerev, Reducing the Impact Load Arising from the Looseness in Joints of Articulating Cranes, Nauchno-tekhnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta, n.2, pp. 37-43, 2015.

A. Joansson, J. Bathelt, G. Broman, Implications of Modelling One-Dimensional Impact by Using a Spring and Damper Element, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 219, n3, pp. 299-305, 2005.
http://dx.doi.org/10.1243/146441905x9926

I. A. Lagerev, Increasing the Cracking Resistance and the Survivability of the Elements the Joints of the Sections of the Jib Crane-manipulating Installations of Mobile Machines, Nauchno-tekhnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta, n.2, pp. 16-22, 2015.

A. E. Naser, A. M. Romashko, Influence of Gaps on the Spatial Positioning Error of the Manipulator with Rotational Kinematic Pairs, Izvestiya vyshikh uchebnykh zavedeniy. Mashinostroenie, n.11, pp. 47-54, 2007.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize