Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of Temperature and Air Equivalence Ratio on Energy Potential of Syngas Produced from Oil Palm Shells Gasification


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i7.14379

Abstract


The aim of this work is to establish the energetic potential of oil palm shells, when transformed through gasification, using air as oxidation agent, in a downdraft gasifier. In this paper, the effect of the temperature inside the reactor and the equivalence ratio ER in the produced gas composition and heating value were studied. It was noticed that in the range of ER between 0.2 and 0.3 the heating value and the gas production in the process increased with the quantity of air supplied to the gasifier, obtaining fuel gases with an average heating value of almost 4.03 MJ/m3. This value is in the acceptable range for fuel gases obtained through gasification with air and shows the energetic potential of oil palm shells. In general, it is possible to obtain, under the described conditions, 6.5 MJ of energy per kilogram of biomass gasified, that could be used in different applications for the production of thermal energy or electricity.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Equivalence Ratio; Fuel Gases; Gasification; Heating Value; Oil Palm Shells

Full Text:

PDF


References


F. N. de C. de P. de A.- Fedepalma, “Anuario Estadístico de la agroindustria de la palma de aceite en Colombia y en el mundo - 2014,” Bogotá - Colombia, 2014.

H. Escalante, J. Orduz, H. J. Zapata, M. C. Cardona, and M. Duarte, “Potencial energético de la biomasa residual,” in Atlas del Potencial Energético de Biomasa Residual en Colombia, Ministerio de Minas y Energia - Republica de Colombia, Ed. 2010, pp. 155–172.

S. L. Rincón, A. Gómez, and W. Klose, “Gasificación de biomasa residual de procesamiento agroindustrial,” Kassel University Press, Kassel, 2011.

J. a. Ruiz, M. C. Juárez, M. P. Morales, P. Muñoz, and M. a. Mendívil, “Biomass gasification for electricity generation: Review of current technology barriers,” Renew. Sustain. Energy Rev., vol. 18, pp. 174–183, 2013.
http://dx.doi.org/10.1016/j.rser.2012.10.021

P. Basu, “Gasification Theory,” in Biomass Gasification, Pyrolysis and Torrefaction, Elsevier Inc., 2013, pp. 199–248.
http://dx.doi.org/10.1016/b978-0-12-396488-5.00007-1

S. Anis and Z. a. Zainal, “Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review,” Renew. Sustain. Energy Rev., vol. 15, pp. 2355–2377, 2011.
http://dx.doi.org/10.1016/j.rser.2011.02.018

P. Basu, Biomass Gasification and Pyrolysis. Practical Design., First Edit. Oxford: Elsevier, 2010.
http://dx.doi.org/10.1016/b978-0-12-374988-8.00003-9

M. L. d. Souza-Santos, Solid Fuels Combustion and Gasification. Modeling, Simulation and Equipment Operation. New York, 2004.
http://dx.doi.org/10.1201/9780203027295

S. R. Rubio, F. E. Sierra, and A. Guerrero, “Gasification from waste organic materials,” Ing. e Investig., vol. 31, no. 3, pp. 17–25, 2011.

S. H. Aljbour and K. Kawamoto, “Bench-scale gasification of cedar wood - Part I: Effect of operational conditions on product gas characteristics,” Chemosphere, vol. 90, no. 4, pp. 1495–1500, 2013.
http://dx.doi.org/10.1016/j.chemosphere.2012.08.029

N. A. Samiran, M. N. M. Jaafar, J.-H. Ng, S. S. Lam, and C. T. Chong, “Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production,” Renew. Sustain. Energy Rev., vol. 62, pp. 1047–1062, Sep. 2016.
http://dx.doi.org/10.1016/j.rser.2016.04.049

A. M. Salem and M. C. Paul, “An integrated kinetic model for downdraft gasifier based on a novel approach that optimises the reduction zone of gasifier,” Biomass and Bioenergy, vol. 109, pp. 172–181, Feb. 2018.
http://dx.doi.org/10.1016/j.biombioe.2017.12.030

S. M. Atnaw, S. A. Sulaiman, and S. Yusup, “Syngas production from downdraft gasification of oil palm fronds,” Energy, vol. 61, pp. 491–501, Nov. 2013.
http://dx.doi.org/10.1016/j.energy.2013.09.039

T. B. Reed and A. Das, Handbook of Biomass Downdraft Gasifier Engine Systems. 1988.
http://dx.doi.org/10.2172/5206099

C. K. Acharya, F. Jiang, C. Liao, P. Fitzgerald, K. S. Vecchio, and R. J. Cattolica, “Tar and CO2 removal from simulated producer gas with activated carbon and charcoal,” Fuel Process. Technol., vol. 106, pp. 201–208, Feb. 2013
http://dx.doi.org/10.1016/j.fuproc.2012.07.026

L. Liu et al., “Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier,” Sci. Total Environ., vol. 626, pp. 423–433, Jun. 2018.
http://dx.doi.org/10.1016/j.scitotenv.2018.01.016

E. Madadian, V. Orsat, and M. Lefsrud, “Comparative Study of Temperature Impact on Air Gasification of Various Types of Biomass in a Research-Scale Down-draft Reactor.” Energy Fuels, 2017, 31 (4), pp 4045–4053
http://dx.doi.org/10.1021/acs.energyfuels.6b03489

P. Basu, Combustion and gasification in fluidized beds. 2006, CRC Press Book.
http://dx.doi.org/10.1201/9781420005158

A. Ongen, H. K. Ozcan, and E. E. Ozbas, “Gasification of biomass and treatment sludge in a fixed bed gasifier,” Int. J. Hydrogen Energy, vol. 41, no. 19, pp. 8146–8153, May 2016.
http://dx.doi.org/10.1016/j.ijhydene.2015.11.159

A. M. Salem and M. C. Paul, “An integrated kinetic model for downdraft gasifier based on a novel approach that optimises the reduction zone of gasifier,” Biomass and Bioenergy, vol. 109, pp. 172–181, Feb. 2018.
http://dx.doi.org/10.1016/j.biombioe.2017.12.030

Y. A. Lenis, J. F. Pérez, and A. Melgar, “Fixed bed gasification of Jacaranda Copaia wood: Effect of packing factor and oxygen enriched air,” Ind. Crops Prod., vol. 84, pp. 166–175, Jun. 2016.
http://dx.doi.org/10.1016/j.indcrop.2016.01.053

P. R. Bhoi, R. L. Huhnke, A. Kumar, S. Thapa, and N. Indrawan, “Scale-up of a downdraft gasifier system for commercial scale mobile power generation,” Renew. Energy, vol. 118, pp. 25–33, Apr. 2018.
http://dx.doi.org/10.1016/j.renene.2017.11.002

C. A. V. B. de Sales et al., “Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents,” Energy Convers. Manag., vol. 145, pp. 314–323, Aug. 2017.

http://dx.doi.org/10.1016/j.enconman.2017.04.101

A. A. P. Susastriawan, H. Saptoadi, and Purnomo, “Small-scale downdraft gasifiers for biomass gasification: A review,” Renew. Sustain. Energy Rev., vol. 76, pp. 989–1003, Sep. 2017.
http://dx.doi.org/10.1016/j.rser.2017.03.112

T. M. Ismail and M. A. El-Salam, “Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification,” Appl. Therm. Eng., vol. 112, pp. 1460–1473, 2017.
http://dx.doi.org/10.1016/j.applthermaleng.2016.10.026

R. Nks, “Experimental Study on Performance of Downdraft Gasifier Reactor under varied ratios of Secondary and Primary air flows,” Energy Procedia, vol. 90, pp. 38–49, 2016.
http://dx.doi.org/10.1016/j.egypro.2016.11.168

C. Higman and M. Van der Burgt, Gasification, Second Edi. 2008.
http://dx.doi.org/10.1016/b978-0-7506-8528-3.00005-5

P. N. Sheth and B. V. Babu, “Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier,” Bioresour. Technol., vol. 100, no. 12, pp. 3127–3133, Jun. 2009.
http://dx.doi.org/10.1016/j.biortech.2009.01.024

V. Kirsanovs, D. Blumberga, I. Veidenbergs, C. Rochas, E. Vigants, and G. Vigants, “Experimental investigation of downdraft gasifier at various conditions,” Energy Procedia, vol. 128, pp. 332–338, Sep. 2017
http://dx.doi.org/10.1016/j.egypro.2017.08.321


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize