Open Access Open Access  Restricted Access Subscription or Fee Access

Tensile and Flexural Performance of Polypropylene Based Oil Palm Fibre Reinforced Metal Laminates


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i2.13999

Abstract


In this research, the effects of fibre composition on the tensile and flexural performance of Oil Palm Fibre Metal Laminates have been experimentally investigated. OPFMLs are constituted of aluminium 6061 and oil palm empty fruit bunch fibre reinforced polypropylene composite. OPFMLs with four different fibre weight compositions (10%, 20%, 30% and 40%) were manufactured in 2/1 configuration. OPFMLs and their respective composite layers were prepared through hot press moulding compression technique using hot press machine. The mechanical properties of OPFMLs were characterised by tensile and flexural tests in accordance with ASTM D3039 and ASTM D790 respectively. Results showed that tensile and flexural performances of OPFMLs depend on fibre composition in the composite layer. It was found that increase in fibre composition increased the tensile strength but decreased the flexural strength. OPFMLs with 40 wt% showed the highest tensile strength of 65.99MPa whereas OPFMLs with 30 wt% showed the highest flexural strength of 152.45MPa. The optical microscopic images showed damage mechanisms in OPFMLs for different fibre weight composition, which includes delamination and debonding.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Fibre Metal Laminates; Tensile Properties; Flexural Properties; Natural Fibres; Oil Palm Empty Fruit Bunch

Full Text:

PDF


References


G. Reyes, H. Kang, Mechanical Behavior of Lightweight Thermoplastic Fiber Metal Laminates, Journal of Materials Processing Technology, Vol. 186, n. 1–3, pp. 284–290, 2007.
http://dx.doi.org/10.1016/j.jmatprotec.2006.12.050

D. Sivakumar, L. F. Ng, N. S. Salmi, Eco-Hybrid Composite Failure Behavior of Two Serial Bolted Joint Holes, Journal of Engineering Technology, Vol. 7, n. 1, pp. 114–124, 2016.

D. Sivakumar, L. F. Ng, M. Z. Selamat, Investigation on Fatigue Life Behaviour of Sustainable Bio-based Fibre Metal Laminate, Journal of Mechanical Engineering, Vol. 1, pp. 123–140, 2017.

S. D. Malingam, F. A. Jumaat, L. F. Ng, K. Subramaniam, A. F. A. Ghani, Tensile and Impact Properties of Cost-Effective Hybrid Fiber Metal Laminate Sandwich Structures, Advances in Polymer Technology, 2017.
http://dx.doi.org/10.1002/adv.21913

K. Subramaniam, S. D. Malingam, N. L. Feng, O. Bapokutty, The Effects of Stacking Configuration on the Response of Tensile and Quasi-Static Penetration to Woven Kenaf/Glass Hybrid Composite Metal Laminate, Polymer Composites, 2017.
http://dx.doi.org/10.1002/pc.24691

D. Sivakumar, S. Kathiravan, L. F. Ng, M. B. Ali, M. Z. Selamat, S. Sivaraos, O. Bapokutty, Experimental Investigation on Charpy Impact Response of Kenaf Bast Fibre Reinforced Metal Laminate System, ARPN Journal of Engineering and Applied Sciences, Vol. 13, n. 3, pp. 822–827.

S. M. R. Khalili, V. Daghigh, R. Eslami Farsani, Mechanical Behavior of Basalt Fiber-reinforced and Basalt Fiber Metal Laminate Composites under Tensile and Bending Loads, Journal of Reinforced Plastic Composite, Vol. 30, n. 8, pp. 647–659, 2011.
http://dx.doi.org/10.1177/0731684411398535

P. Cortes, W. J. Cantwell, Structure-Properties Relations in Titanium - Based Thermoplastic Fiber Metal Laminates, Polymer Composites, Vol. 27, n. 3, pp. 264–270, 2006.
http://dx.doi.org/10.1002/pc.20189

P. Cortes, The Fracture Properties of a Fiber Metal Laminate Based on a Self-Reinforced Thermoplastic Composite Material, Polymer Composites, Vol. 35, n. 3, pp. 427–434, 2014.
http://dx.doi.org/10.1002/pc.22677

R. Santiago, Impact on Thermoplastic Fibre-Metal Laminates: Preliminary results and observations, International Symposium on Solid Mechanics, Brazil, 2013, pp. 1–17.

A. Vlot, Impact Loading on Fibre Metal Laminates, International Journal Impact Engineering, Vol. 18, n. 3, pp. 291–307, 1996.
http://dx.doi.org/10.1016/0734-743x(96)89050-6

P. Cortes, W. J. Cantwell, The Prediction of Tensile Failure in Titanium-Based Thermoplastic Fibre-Metal Laminates, Composite Science and Technology, Vol. 66, n. 13, pp. 2306–2316, 2006.
http://dx.doi.org/10.1016/j.compscitech.2005.11.031

Sivakumar, D., Ng, L., Mitchell Chew, R., Bapokutty, O., Investigation on Failure Strength of Bolted Joints Woven Fabric Reinforced Hybrid Composite, (2017) International Review of Mechanical Engineering (IREME), 11 (2), pp. 138-143.
http://dx.doi.org/10.15866/ireme.v11i2.10897

D. Sivakumar, L. F. Ng, S. M. Lau, K. T. Lim, Fatigue Life Behaviour of Glass/Kenaf Woven-Ply Polymer Hybrid Biocomposites, Journal of Polymers and the Environment, Vol. 26, n. 2, pp. 499–507, 2018.
http://dx.doi.org/10.1007/s10924-017-0970-0

B. Alcock, N. O. Cabrera, N. M. Barkoula, T. Peijs, Low Velocity Impact Performance of Recyclable All-Polypropylene Composites, Composite Sciences and Technology, Vol. 66, n. 11–12, pp. 1724–1737, 2006.
http://dx.doi.org/10.1016/j.compscitech.2005.11.010

B. Alcock, N. O.Cabrera, N. M. Barkoula, J. Loos, T. Peijs, The Mechanical Properties of Unidirectional All-Polypropylene Composites, Composite Part A: Applied Science and Manufacturing, Vol. 37, n. 5, pp. 716–726, 2006.
http://dx.doi.org/10.1016/j.compositesa.2005.07.002

B. Alcock, N. O. Cabrera, N. M. Barkoula, J. Loos, T. Peijs, The Effect of Temperature and Strain Rate on the Impact Performance of Recyclable All-Polypropylene Composites, Composite Part B: Engineering, Vol. 39, n. 3, pp. 537–547, 2008.
http://dx.doi.org/10.1016/j.compositesb.2007.03.003

J. G. Carrillo, W. J. Cantwell, Scaling Effects in the Tensile Behavior of Fiber-Metal Laminates, Composites Science and Technology, Vol. 67, n. 7–8, pp. 1684–1693, 2007.
http://dx.doi.org/10.1016/j.compscitech.2006.06.018

P. Central, The Impact Resistance of Fiber-Metal Laminates Based on Glass Fiber Reinforced Polypropylene, Polymer Composites, Vol. 27, n. 6, pp. 700-708, 2006.
http://dx.doi.org/10.1002/pc.20240

J. G. Carrillo, W. J. Cantwell, Mechanical Properties of a Novel Fiber–Metal Laminate Based on a Polypropylene Composite, Mechanics of Materials, Vol. 41, n. 7, pp. 828–838, 2009.
http://dx.doi.org/10.1016/j.mechmat.2009.03.002

D. Sivakumar, S. Kathiravan, M. Z. Selamat, M. R. Said, Sivaraos, A Study on Impact Behaviour of a novel Oil Palm Fibre Reinforced Metal Laminate System, ARPN Journal of Engineering and Applied Sciences, Vol. 11, n.4, pp. 2483–2488, 2016.
http://dx.doi.org/10.4028/www.scientific.net/amm.789-790.131

L. M. G. Vieira, J. C. Santos, T. H. Panzera, J. C. C. Rubio, F. Scarpa, Novel Fibre Metal Laminate Sandwich Composite Structure with Sisal Woven Core, Industrial Crops and Products, Vol. 99, pp. 189–195, 2017.
http://dx.doi.org/10.1016/j.indcrop.2017.02.008

Ng, L., Sivakumar, D., Zakaria, K., Selamat, M., Fatigue Performance of Hybrid Fibre Metal Laminate Structure, (2017) International Review of Mechanical Engineering (IREME), 11 (1), pp. 61-68.
http://dx.doi.org/10.15866/ireme.v11i1.10532

N. L. Feng, S. DharMalingam, K. A. Zakaria, M. Z. Selamat, Investigation on the Fatigue Life Characteristic of Kenaf/Glass Woven-Ply Reinforced Metal Sandwich Materials, Journal of Sandwich Structures and Materials, 2017.
http://dx.doi.org/10.1177/1099636217729910

C. V. Srinivasa K. N. Bharath, Impact and Hardness Properties of Areca Fiber-Epoxy Reinforced Composites, Journal of Materials and Environmental Science, Vol. 2, n. 4, pp. 351–356, 2011.

Y. L. Shen, N. Chawla, On the Correlation Between Hardness and Tensile Strength in Particle Reinforced Metal Matrix Composites, Materials Science and Engineering A, Vol. 297, n. 1–2, pp. 44–47, 2001.
http://dx.doi.org/10.1016/s0921-5093(00)01256-9

H. Wang, H. Ku, N. Pattarachaiyakoop, M. Trada, A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites, Composite Part B Engineering, Vol. 42, n. 4, pp. 856–873, 2011.
http://dx.doi.org/10.1016/j.compositesb.2011.01.010

S. E. Moussavi-Torshizi, S. Dariushi, M. Sadighi, P. Safarpour, A Study on Tensile Properties of a Novel Fiber/Metal Laminates, Materials Science and Engineering A, Vol. 527, n. 18–19, pp. 4920–4925, 2010.
http://dx.doi.org/10.1016/j.msea.2010.04.028

P. Cortés, W. J.Cantwell, The Fracture Properties of a Fibre–Metal Laminate Based on Magnesium Alloy, Composite Part B Engineering, Vol. 37, n. 2–3, pp. 163–170, 2005.
http://dx.doi.org/10.1016/j.compositesb.2005.06.002

S. Handscombe, Optimal Bonding Conditions of Curv-Aluminium Fibre Metal Laminates, Bachelor Thesis, Dept. Eng., Australian National Univ., Canberra, 2011.
http://dx.doi.org/10.1007/978-94-010-0995-9_6

M. Jawaid, H. P. S. Abdul Khalil, A. Abu Bakar, Woven Hybrid Composites: Tensile and Flexural Properties of Oil Palm-Woven Jute Fibres Based Epoxy Composites, Materials Science and Engineering A, Vol. 528, n. 15, pp. 5190–5195, 2011.
http://dx.doi.org/10.1016/j.msea.2011.03.047

R. Ramli, R.Yunus, M. Beg, D. Prasad, Oil palm Fiber Reinforced Polypropylene Composites: Effects of Fiber Loading and Coupling Agents on Mechanical, Thermal, and Interfacial Properties, Journal of Composite Materials, Vol. 46, n. 11, pp. 1275–1284, 2011.
http://dx.doi.org/10.1177/0021998311417647

S. M. R. Khalili, H. R. Ahmadi, O. Lorestani, Study the Tensile, Impact and Bending Properties of Steel / Aluminum / Glass Reinforced Polymer Hybrid Composites (FML), pp. 2–3.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize