Open Access Open Access  Restricted Access Subscription or Fee Access

Sonication Assisted Synthesis of Biocomposite from Starch/Nanoclay and its Properties


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i3.13641

Abstract


The potential development of the biodegradable plastic packaging technology in Indonesia is enormous because Indonesia has abundant biodiversity of agricultural and marine products to be developed into polymers. Cassava starch as the matrix biocomposite in packaging manufacturer has a great potential because in Indonesia there are various starch-producing plants. The research objective was to determine the influence of the sonication process on the strength of biocomposite starch reinforced by nanoclay. The method was a synthesis of biocomposite using a casting procedure. The sonication process of 5% (b/b) nanoclay in solution was conducted in 15, 30, 45, and 60 min using the ultrasonic homogenizer and then poured into the mold. The mechanical properties were measured using a tensile test machine with a maximum load of 50 N. The results showed that the duration of the sonication process affects the tensile strength of biocomposite starch reinforced by nanoclay. This result was demonstrated by the term of the sonication process by 15, 30, 45, and 60 minutes resulting in biocomposites strength and elongation of 11.79, 14.77, 20.52, 28.01 MPa, respectively. It showed that the duration of the sonication process of more than or equal to 45 minutes enhances both tensile strength and surface smoothness.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Biocomposite; Cassava Starch; Nanoclay; Sonication

Full Text:

PDF


References


H. Abral, G. J. Putra, M. Asrofi, J.-W. Park, H.-J. Kim, Effect of vibration duration of high ultrasound applied to bio-composite while gelatinized on its properties, Ultrason. Sonochem., vol. 40, pp. 697–702, 2018.
http://dx.doi.org/10.1016/j.ultsonch.2017.08.019

C. Lytle, Plastic Pollution, http://plastic-pollution.org/, 2017. [Online]. Available: http://plastic-pollution.org/. [Accessed: 03-May-2017].

Ciptakarya, Production of plastic waste in Indonesia 5.4 millions ton per years (in Indonesian), 2015. [Online]. Available: http://ciptakarya.pu.go.id/plp/index.php/blog/baca/146. [Accessed: 15-Aug-2017].

A. M. Diez-Pascual, A. L. Diez-Vicente, Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties, Int. J. Mol. Sci., vol. 15, pp. 10950–10973, 2014.
http://dx.doi.org/10.3390/ijms150610950

M. P. S. Ningwulan, Synthesis of biocomposite edible film from gelatin/bacterial cellulose microcrystal (bcmc): variation of matrix concentration, filler, and sonication time (in Indonesian), Bachelor thesis Univ.of Indonesia., 2012.

N. E. Wahyuningtiyas, H. Suryanto, Analysis of Biodegradation of Bioplastics Made of Cassava Starch, JMEST, vol. 1, no. 1, pp. 40–53, 2017.
http://dx.doi.org/10.17977/um016v1i12017p024

A. Aprianita, T. Vasiljevic, A. Bannikova, S. Kasapis, Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots, J. Food Sci. Technol., vol. 51, no. 12, pp. 3669–3679, 2014.
http://dx.doi.org/10.1007/s13197-012-0915-5

Julianto, National Cassava Production (in Indonesian), Tabloid Sinar Tani, 2014. [Online]. Available: http://tabloidsinartani.com/read-detail/read/produksi-singkong-nasional/.

S. Sulaiman, A. Manut, and A. R. Nur Firdaus, Starch Plastic Packaging and Agriculture Applications, in ICIMT ’09. International Conference, IEEE, 2009, pp. 513–516.
http://dx.doi.org/10.1109/icimt.2009.54

T. Chowdhury and M. Das, Effect of antimicrobials on mechanical, barrier and optical properties of cornstarch-based self-supporting edible film, Int. J. Food Stud., vol. 2, no. 2, pp. 212–223, 2013.
http://digitalcommons.unl.edu/usdaarsfacpub/1459

H. Fan, N. Ji, M. Zhao, L. Xiong, and Q. Sun, Characterization of starch films impregnated with starch nanoparticles prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, Food Chem., vol. 192, pp. 865–872, 2016.
http://dx.doi.org/10.1016/j.foodchem.2015.07.093

X. Li, C. Qiu, N. Ji, C. Sun, L. Xiong, and Q. Sun, Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films, Carbohydr. Polym., vol. 121, pp. 155–162, 2015.
http://dx.doi.org/10.1016/j.carbpol.2014.12.040

J. Sandler, P. Werner, M. S. Shaffer, V. Demchuk, V. Altstädt, and A. H. Windle, Carbon-nanofibre-reinforced poly(ether ether ketone) composites, Compos. Part A Appl. Sci. Manuf., vol. 33, no. 8, pp. 1033–1039, 2002.
http://dx.doi.org/10.1016/s1359-835x(02)00084-2

C. M. O. Müller, J. B. Laurindo, and F. Yamashita, Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing, Carbohydr. Polym., vol. 89, no. 2, pp. 504–510, 2012.
http://dx.doi.org/10.1016/j.carbpol.2012.03.035

C. C. Eng, N. A. Ibrahim, N. Zainuddin, H. Ariffin, W. M. Z. W. Yunus, and Y. Y. Then, Enhancement of Mechanical and Dynamic Mechanical Properties of Hydrophilic Nanoclay Reinforced Polylactic Acid/Polycaprolactone/Oil Palm Mesocarp Fiber Hybrid Composites, Int. J. Polym. Sci., vol. 2014, pp. 1–8, 2014.
http://dx.doi.org/10.1155/2014/715801

H. Assaedi, F. U. A. Shaikh, and I. M. Low, Effect of nano-clay on mechanical and thermal properties of geopolymer, J. Asian Ceram. Soc., vol. 4, no. 1, pp. 19–28, 2016.
http://dx.doi.org/10.1016/j.jascer.2015.10.004

M. H. Gabr, N. T. Phong, M. A. Abdelkareem, K. Okubo, K. Uzawa, I. Kimpara, and T. Fujii, Mechanical, thermal, and moisture absorption properties of nano-clay reinforced nano-cellulose biocomposites, Cellulose, vol. 20, no. 2, pp. 819–826, 2013.
http://dx.doi.org/10.1007/s10570-013-9876-8

K. Sato, J.-G. Li, H. Kamiya, and T. Ishigaki, Ultrasonic Dispersion of TiO2 Nanoparticles in Aqueous Suspension, J. Am. Ceram. Soc., vol. 91, no. 8, pp. 2481–2487, 2008.
http://dx.doi.org/10.1111/j.1551-2916.2008.02493.x

L. R. Rane, N. R. Savadekar, P. G. Kadam, and S. T. Mhaske, Preparation and Characterization of K-Carrageenan/Nanosilica Biocomposite Film, J. Mater., vol. 2014, pp. 1–8, 2014.
http://dx.doi.org/10.1155/2014/736271

W. Cheng, J. Chen, D. Liu, X. Ye, and F. Ke, Impact of ultrasonic treatment on properties of starch film-forming dispersion and the resulting films, Carbohydr. Polym., vol. 81, no. 3, pp. 707–711, 2010.
http://dx.doi.org/10.1016/j.carbpol.2010.03.043

H. Suryanto, A. A. Fikri, A. A. Permanasari, U. Yanuhar, and S. Sukardi, Pulsed Electric Field Assisted Extraction of Cellulose From Mendong Fiber (Fimbristylis globulosa) and its Characterization, J. Nat. Fibers, vol. 15, no. 3, pp. 406–415, 2018.
http://dx.doi.org/10.1080/15440478.2017.1330722

J. J. G. van Soest, S. H. D. Hulleman, D. de Wit, and J. F. G. Vliegenthart, Crystallinity in starch bioplastics, Ind. Crops Prod., vol. 5, no. 1, pp. 11–22, 1996.
http://dx.doi.org/10.1016/0926-6690(95)00048-8

A. S. Babu, R. Parimalavalli, K. Jagannadham, and J. S. Rao, Chemical and structural properties of sweet potato starch treated with organic and inorganic acid., J. Food Sci. Technol., vol. 52, no. 9, pp. 5745–53, 2015.
http://dx.doi.org/10.1007/s13197-014-1650-x

L. Alonso‐Gomez, A. M. Niño‐López, A. M. Romero‐Garzón, P. Pineda‐Gomez, A. del Real‐Lopez, and M. E. Rodriguez‐Garcia, Physicochemical transformation of cassava starch during fermentation for production of sour starch in Colombia, Starch ‐ Stärke, vol. 68, no. 11–12, pp. 1139–1147, 2016.
http://dx.doi.org/10.1002/star.201600059

M. Todica, E. M. Nagy, C. Niculaescu, O. Stan, N. Cioica, and C. V. Pop, XRD investigation of some thermal degraded starch based materials, J. Spectrosc., vol. 2016, no. Article ID 9605312, pp. 1–6, 2016.
http://dx.doi.org/10.1155/2016/9605312

F. M. Pelissari, M. M. Andrade-Mahecha, P. J. do A. Sobral, and F. C. Menegalli, Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca), Food Hydrocoll., vol. 30, no. 2, pp. 681–690, 2013.
http://dx.doi.org/10.1016/j.foodhyd.2012.08.007

S. M. Londoño-Restrepo, N. Rincón-Londoño, M. Contreras-Padilla, A. A. Acosta-Osorio, L. A. Bello-Pérez, J. C. Lucas-Aguirre, V. D. Quintero, P. Pineda-Gómez, A. del Real-López, and M. E. Rodríguez-García, Physicochemical, morphological, and rheological characterization of Xanthosoma robustum Lego-like starch, Int. J. Biol. Macromol., vol. 65, pp. 222–228, 2014.
http://dx.doi.org/10.1016/j.ijbiomac.2014.01.035

E. de M. Teixeira, A. de Campos, J. M. Marconcini, T. J. Bondancia, D. Wood, A. Klamczynski, L. H. C. Mattoso, and G. M. Glenn, Starch/fiber/poly(lactic acid) foam and compressed foam composites, RSC Adv., vol. 4, no. 13, p. 6616, 2014.
http://dx.doi.org/10.1039/c3ra47395c

K. Katerinopoulou, A. Giannakas, K. Grigoriadi, N. M. Barkoula, and A. Ladavos, Preparation and characterization of acetylated corn starch–(PVOH)/clay nanocomposite films, Carbohydr. Polym., vol. 102, pp. 216–222, 2014.
http://dx.doi.org/10.1016/j.carbpol.2013.11.030

Q. T. Nguyen and D. G. Baird, An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide, Polymer (Guildf)., vol. 48, no. 23, pp. 6923–6933, 2007.
http://dx.doi.org/10.1016/j.polymer.2007.09.015

H. Naderi-Samani, R. Shoja Razavi, M. R. Loghman-Estarki, and M. Ramazani, The effects of organoclay on the morphology and mechanical properties of PAI/clay nanocomposites coatings prepared by the ultrasonication assisted process, Ultrason. Sonochem., vol. 38, pp. 306–316, 2017.
http://dx.doi.org/10.1016/j.ultsonch.2017.03.009

J. L. Suter, D. Groen, and P. V. Coveney, Mechanism of Exfoliation and Prediction of Materials Properties of Clay-Polymer Nanocomposites from Multiscale Modeling, Nano Lett., vol. 15, no. 12, pp. 8108–8113, 2015.
http://dx.doi.org/10.1021/acs.nanolett.5b03547

H. Suryanto, P. T. Hutomo, R. Wanjaya, and P. Puspitasari, The Structure of Bioplastic from Cassava Starch with Nanoclay Reinforcement, in AIP International Proceeding International Mechanical Engineering and Engineering Education (IMEEEC), 2016, p. 030027–(1–4).
http://dx.doi.org/10.1063/1.4965761


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize