Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of Fuel Injection Strategies on Performance and Emissions in HCCI Engines: a Review


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v12i4.13568

Abstract


Homogeneous charge compression ignition (HCCI) technology in internal combustion engines has improved several performance characteristics of engines. For instance, it has improved thermal efficiency and it has lowered the level of engine emissions, too. The application of this technology requires the usage of various blends of fuels, which are popularly injected into the engine using direct injection method at different timings i.e. early direct, late direct, and Single/Split (multiple) injections. This paper reviews the research that has shown that these three types of injection strategies have different impacts on the performance and on the emissions of engines with a particular interest in power output and thermal efficiency, cylinder pressure, heat release, pressure rise, combustion rate, energy consumption, combustion efficiency and brake mean effective pressure. Different researchers have applied varying methods in studying the impacts of these injection strategies, e.g. a method that involved a variation of the injection angles in investigating the rates of emissions at different injection timings. Furthermore, early direct injection timing strategy has proved to be more advantageous if compared to the other two injection timing strategies as it increases ignition delay (ID) thus resulting in the formation of a well-mixed fuel-oxidizer homogeneous mixture. Consequently, the early direct approach is recommended for usage in engines that adopt the HCCI technology.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Keywords: HCCI Engine; Fuel Injection Strategies; Performance; Emissions

Full Text:

PDF


References


S. Onishi, S. H. Jo, K. Shoda, P. Do Jo, and S. Kato, Active thermo-atmosphere combustion (ATAC)-a new combustion process for internal combustion engines, SAE Technical paper 0148-7191, 1979.
http://dx.doi.org/10.4271/790501

M. Jeftić and M. Zheng, A study of the effect of post injection on combustion and emissions with premixing enhanced fueling strategies, Applied Energy, vol. 157, pp. 861-870, 2015.
http://dx.doi.org/10.1016/j.apenergy.2015.02.052

M. Sjöberg and J. E. Dec, EGR and intake boost for managing HCCI low-temperature heat release over wide ranges of engine speed, SAE Technical Paper 0148-7191, 2007.
http://dx.doi.org/10.4271/2007-01-0051

Z. Wang, S. J. Shuai, J. X. Wang, and G. H. Tian, A computational study of direct injection gasoline HCCI engine with secondary injection, Fuel, vol. 85, pp. 1831-1841, 2006.
http://dx.doi.org/10.1016/j.fuel.2006.02.013

Y. Wang, Y. Zhao, F. Xiao, and D. Li, Combustion and emission characteristics of a diesel engine with DME as port premixing fuel under different injection timing, Energy Conversion and Management, vol. 77, pp. 52-60, 2014.
http://dx.doi.org/10.1016/j.enconman.2013.09.011

A. A. Hairuddin, T. Yusaf, and A. P. Wandel, A review of hydrogen and natural gas addition in diesel HCCI engines, Renewable and Sustainable Energy Reviews, vol. 32, pp. 739-761, 2014.
http://dx.doi.org/10.1016/j.rser.2014.01.018

T. Fang, R. E. Coverdill, F. L. Chia-fon, and R. A. White, Effects of injection angles on combustion processes using multiple injection strategies in an HSDI diesel engine, Fuel, vol. 87, pp. 3232-3239, 2008.
http://dx.doi.org/10.1016/j.fuel.2008.05.012

J. Benajes, J. Martín, R. Novella, and K. Thein, Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-stroke high speed direct injection compression ignition engine, Applied Energy, vol. 161, pp. 465-475, 2016.
http://dx.doi.org/10.1016/j.apenergy.2015.10.034

R. H. Thring, Homogeneous-charge compression-ignition (HCCI) engines, SAE Technical paper 0148-7191, 1989.
http://dx.doi.org/10.4271/892068

H. Machrafi and S. Cavadias, Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation, Combustion and Flame, vol. 155, pp. 557-570, 2008.
http://dx.doi.org/10.1016/j.combustflame.2008.04.022

M. Kondo, S. Kimura, I. Hirano, Y. Uraki, and R. Maeda, Development of noise reduction technologies for a small direct-injection diesel engine, Jsae Review, vol. 21, pp. 327-333, 2000.
http://dx.doi.org/10.1016/s0389-4304(00)00052-7

Y. Yang, J. E. Dec, N. Dronniou, and M. Sjöberg, Tailoring HCCI heat-release rates with partial fuel stratification: Comparison of two-stage and single-stage-ignition fuels, Proceedings of the Combustion Institute, vol. 33, pp. 3047-3055, 2011.
http://dx.doi.org/10.1016/j.proci.2010.06.114

M. Yao, Z. Zheng, and H. Liu, Progress and recent trends in homogeneous charge compression ignition (HCCI) engines, Progress in Energy and Combustion Science, vol. 35, pp. 398-437, 2009.
http://dx.doi.org/10.1016/j.pecs.2009.05.001

M. Jia, M. Xie, T. Wang, and Z. Peng, The effect of injection timing and intake valve close timing on performance and emissions of diesel PCCI engine with a full engine cycle CFD simulation, Applied Energy, vol. 88, pp. 2967-2975, 2011.
http://dx.doi.org/10.1016/j.apenergy.2011.03.024

J. Liu, F. Yang, H. Wang, M. Ouyang, and S. Hao, Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing, Applied Energy, vol. 110, pp. 201-206, 2013.
http://dx.doi.org/10.1016/j.apenergy.2013.03.024

X. Lü, Y. Hou, L. Zu, and Z. Huang, Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection, Fuel, vol. 85, pp. 2622-2631, 2006.
http://dx.doi.org/10.1016/j.fuel.2006.05.003

M. Sjöberg and J. E. Dec, Comparing late-cycle autoignition stability for single-and two-stage ignition fuels in HCCI engines, Proceedings of the combustion institute, vol. 31, pp. 2895-2902, 2007.
http://dx.doi.org/10.1016/j.proci.2006.08.010

P. Das, P. Subbarao, and J. Subrahmanyam, Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy, Energy Conversion and Management, vol. 95, pp. 248-258, 2015.
http://dx.doi.org/10.1016/j.enconman.2015.02.018

A. Paul, P. K. Bose, R. S. Panua, and R. Banerjee, An experimental investigation of performance-emission trade off of a CI engine fueled by diesel–compressed natural gas (CNG) combination and diesel–ethanol blends with CNG enrichment, Energy, vol. 55, pp. 787-802, 2013.
http://dx.doi.org/10.1016/j.energy.2013.04.002

N. N. Mustafi, R. R. Raine, and S. Verhelst, Combustion and emissions characteristics of a dual fuel engine operated on alternative gaseous fuels, Fuel, vol. 109, pp. 669-678, 2013.
http://dx.doi.org/10.1016/j.fuel.2013.03.007

M. Christensen, B. Johansson, P. Amnéus, and F. Mauss, Supercharged homogeneous charge compression ignition, SAE Technical Paper 0148-7191, 1998.
http://dx.doi.org/10.4271/980787

T. W. Ryan and T. J. Callahan, Homogeneous charge compression ignition of diesel fuel, SAE Technical Paper 0148-7191, 1996.
http://dx.doi.org/10.4271/961160

C. D. Marriott and R. D. Reitz, Experimental investigation of direct injection-gasoline for premixed compression ignited combustion phasing control, SAE Technical Paper 0148-7191, 2002.
http://dx.doi.org/10.4271/2002-01-0418

J. Benajes, S. Molina, A. García, and J. Monsalve-Serrano, Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels, Energy Conversion and Management, vol. 99, pp. 193-209, 2015.
http://dx.doi.org/10.1016/j.enconman.2015.04.046

S. Ma, Z. Zheng, H. Liu, Q. Zhang, and M. Yao, Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion, Applied energy, vol. 109, pp. 202-212, 2013.
http://dx.doi.org/10.1016/j.apenergy.2013.04.012

A. Paykani, A.-H. Kakaee, P. Rahnama, and R. D. Reitz, Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion, Energy, vol. 90, pp. 814-826, 2015.
http://dx.doi.org/10.1016/j.energy.2015.07.112

A. Polk, C. Gibson, N. Shoemaker, K. Srinivasan, and S. Krishnan, Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels, Journal of Energy Resources Technology, vol. 135, p. 032202, 2013.
http://dx.doi.org/10.1115/1.4023482

A. Turkcan, A. N. Ozsezen, and M. Canakci, Effects of second injection timing on combustion characteristics of a two stage direct injection gasoline–alcohol HCCI engine, Fuel, vol. 111, pp. 30-39, 2013.
http://dx.doi.org/10.1016/j.fuel.2013.04.029

J. Hunicz and P. Kordos, An experimental study of fuel injection strategies in CAI gasoline engine, Experimental Thermal and Fluid Science, vol. 35, pp. 243-252, 2011.
http://dx.doi.org/10.1016/j.expthermflusci.2010.09.007

Y. Li, H. Zhao, N. Brouzos, T. Ma, and B. Leach, Effect of injection timing on mixture and CAI combustion in a GDI engine with an air-assisted injector, SAE Technical Paper 0148-7191, 2006.
http://dx.doi.org/10.4271/2006-01-0206

W. Hwang, J. Dec, and M. Sjöberg, Spectroscopic and chemical-kinetic analysis of the phases of HCCI autoignition and combustion for single-and two-stage ignition fuels, Combustion and Flame, vol. 154, pp. 387-409, 2008.
http://dx.doi.org/10.1016/j.combustflame.2008.03.019

S. C. Kong, C. D. Marriott, R. D. Reitz, and M. Christensen, Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFD, SAE Technical paper 0148-7191, 2001.
http://dx.doi.org/10.4271/2001-01-1026

G. Kontarakis, N. Collings, and T. Ma, Demonstration of HCCI using a single cylinder four-stroke SI engine with modified valve timing, SAE Technical Paper 0148-7191, 2000.
http://dx.doi.org/10.4271/2000-01-2870

K. Nakagome, N. Shimazaki, K. Niimura, and S. Kobayashi, Combustion and emission characteristics of premixed lean diesel combustion engine, SAE technical paper 0148-7191, 1997.
http://dx.doi.org/10.4271/970898

S. Yamaoka, H. Kakuya, S. Nakagawa, T. Nogi, A. Shimada, and Y. Kihara, A study of controlling the auto-ignition and combustion in a gasoline HCCI engine, SAE Technical Paper 0148-7191, 2004.
http://dx.doi.org/10.4271/2004-01-0942

M. Y. Selim, Pressure–time characteristics in diesel engine fueled with natural gas, Renewable Energy, vol. 22, pp. 473-489, 2001.
http://dx.doi.org/10.1016/s0960-1481(00)00115-4

Y. Takeda, N. Keiichi, and N. Keiichi, Emission characteristics of premixed lean diesel combustion with extremely early staged fuel injection, SAE Technical Paper 0148-7191, 1996.
http://dx.doi.org/10.4271/961163

G. A. Alla, H. Soliman, O. Badr, and M. A. Rabbo, Effect of injection timing on the performance of a dual fuel engine, Energy conversion and Management, vol. 43, pp. 269-277, 2002.
http://dx.doi.org/10.1016/s0196-8904(00)00168-0

B. D. Gowda and T. Echekki, Complex injection strategies for hydrogen-fueled HCCI engines, Fuel, vol. 97, pp. 418-427, 2012.
http://dx.doi.org/10.1016/j.fuel.2012.01.060

Y. Iwabuchi, K. Kawai, T. Shoji, and Y. Takeda, Trial of new concept diesel combustion system-premixed compression-ignited combustion, SAE Technical Paper 0148-7191, 1999.
http://dx.doi.org/10.4271/1999-01-0185

S. Kimura, O. Aoki, Y. Kitahara, and E. Aiyoshizawa, Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standards, SAE Technical Paper 0148-7191, 2001.
http://dx.doi.org/10.4271/2001-01-0200

M. Costa, U. Sorge, and L. Allocca, Increasing energy efficiency of a gasoline direct injection engine through optimal synchronization of single or double injection strategies, Energy conversion and management, vol. 60, pp. 77-86, 2012.
http://dx.doi.org/10.1016/j.enconman.2011.12.025

Hassan. A. Aljaberi, A. A. Hairuddin, and N. A. Aziz, The use of different types of piston in an HCCI engine: A review, International Journal of Automotive and Mechanical Engineering, vol. 14, pp. 4348-4348, 2017.
http://dx.doi.org/10.15282/ijame.14.2.2017.17.0346

S. Saxena and I. D. Bedoya, Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits, Progress in Energy and Combustion Science, vol. 39, pp. 457-488, 2013.
http://dx.doi.org/10.1016/j.pecs.2013.05.002

S. Z. Rezaei, F. Zhang, H. Xu, A. Ghafourian, J. M. Herreros, and S. Shuai, Investigation of two-stage split-injection strategies for a Dieseline fuelled PPCI engine, Fuel, vol. 107, pp. 299-308, 2013.
http://dx.doi.org/10.1016/j.fuel.2012.11.048

B. Walter and B. Gatellier, "Development of the high power NADI™ concept using dual mode diesel combustion to achieve zero NOx and particulate emissions," SAE Technical Paper 0148-7191, 2002.
http://dx.doi.org/10.4271/2002-01-1744

M. Xu, Y. Gui, and K. Y. Deng, Fuel injection and EGR control strategy on smooth switching of CI/HCCI mode in a diesel engine, Journal of the Energy Institute, vol. 88, pp. 157-168, 2015.
http://dx.doi.org/10.1016/j.joei.2014.06.005

K. Anand and R. Reitz, Exploring the benefits of multiple injections in low temperature combustion using a diesel surrogate model, Fuel, vol. 165, pp. 341-350, 2016.
http://dx.doi.org/10.1016/j.fuel.2015.10.087

X. Lu, Y. Qian, Z. Yang, D. Han, J. Ji, X. Zhou, et al., Experimental study on compound HCCI (homogenous charge compression ignition) combustion fueled with gasoline and diesel blends, Energy, vol. 64, pp. 707-718, 2014.
http://dx.doi.org/10.1016/j.energy.2013.10.068

A. Turkcan, A. N. Ozsezen, and M. Canakci, Experimental investigation of the effects of different injection parameters on a direct injection HCCI engine fueled with alcohol–gasoline fuel blends, Fuel processing technology, vol. 126, pp. 487-496, 2014.
http://dx.doi.org/10.1016/j.fuproc.2014.05.023

W. Su, T. Lin, and Y. Pei, A compound technology for HCCI combustion in a DI diesel engine based on the multi-pulse injection and the BUMP combustion chamber, SAE Technical Paper 0148-7191, 2003.
http://dx.doi.org/10.4271/2003-01-0741

J. Waldman, D. Nitz, T. Aroonsrisopon, D. E. Foster, and M. Iida, Experimental investigation into the effects of direct fuel injection during the negative valve overlap period in an gasoline fueled HCCI engine, SAE Technical Paper 0148-7191, 2007.
http://dx.doi.org/10.4271/2007-01-0219

W. Anderson, J. Yang, D. Brehob, J. Vallance, and R. Whiteaker, Understanding the thermodynamics of direct injection spark ignition (DISI) combustion systems: an analytical and experimental investigation, SAE Technical Paper 0148-7191, 1996.
http://dx.doi.org/10.4271/962018

F. Zhang, R. Yu, and X.-S. Bai, Effect of split fuel injection on heat release and pollutant emissions in partially premixed combustion of PRF70/air/EGR mixtures, Applied Energy, vol. 149, pp. 283-296, 2015.
http://dx.doi.org/10.1016/j.apenergy.2015.03.058

M. Zheng and R. Kumar, Implementation of multiple-pulse injection strategies to enhance the homogeneity for simultaneous low-NOx and-soot diesel combustion, International Journal of Thermal Sciences, vol. 48, pp. 1829-1841, 2009.
http://dx.doi.org/10.1016/j.ijthermalsci.2009.02.009

J. Hunicz and P. Kordos, Experimental study of the gasoline engine operated in spark ignition and controlled auto-ignition combustion modes, SAE Technical Paper 0148-7191, 2009.
http://dx.doi.org/10.4271/2009-01-2667

X. Wang, H. Zhao, and H. Xie, Effect of piston shapes and fuel injection strategies on stoichiometric stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine by numerical simulations, Energy Conversion and Management, vol. 98, pp. 387-400, 2015.
http://dx.doi.org/10.1016/j.enconman.2015.03.063

Z. Zheng and M. Yao, Charge stratification to control HCCI: Experiments and CFD modeling with n-heptane as fuel, Fuel, vol. 88, pp. 354-365, 2009.
http://dx.doi.org/10.1016/j.fuel.2008.09.002

J. Eng, Characterization of pressure waves in HCCI combustion, SAE Technical Paper 0148-7191, 2002.
http://dx.doi.org/10.4271/2002-01-2859

M. Y. Kim, C. S. Lee, Effect of a narrow fuel spray angle and a dual injection configuration on the improvement of exhaust emissions in a HCCI diesel engine, Fuel, v. 86, pp. 2871-2880, 2007.
http://dx.doi.org/10.1016/j.fuel.2007.03.016

F. Zhao, T. N. Asmus, D. N. Assanis, J. E. Dec, J. A. Eng, and P. M. Najt, Homogeneous charge compression ignition (HCCI) engines, SAE Technical Paper 2003.
http://dx.doi.org/10.4271/892068

M. Richter, J. Engström, A. Franke, M. Aldén, A. Hultqvist, B. Johansson, The influence of charge inhomogeneity on the HCCI combustion process, SAE Technical Paper 0148-7191, 2000.
http://dx.doi.org/10.4271/2000-01-2868

G. A. Karim, Combustion in gas fueled compression: ignition engines of the dual fuel type, Transactions-american society of mechanical engineers journal of engineering for gas turbines and power, vol. 125, pp. 827-836, 2003.
http://dx.doi.org/10.1115/1.1581894

Y. Urata, M. Awasaka, J. Takanashi, T. Kakinuma, T. Hakozaki, and A. Umemoto, A study of gasoline-fuelled HCCI engine equipped with an electromagnetic valve train, SAE Technical Paper 0148-7191, 2004.
http://dx.doi.org/10.4271/2004-01-1898

Y. Gui, K. Deng, M. Xu, L. Shi, and Y. Sun, An integrated model for negative valve overlap early injection HCCI combustion, Journal of the Energy Institute, vol. 87, pp. 341-353, 2014.
http://dx.doi.org/10.1016/j.joei.2014.03.027

J. Hunicz, A. Medina, G. Litak, P. L. Curto-Risso, and L. Guzmán-Vargas, Effects of direct fuel injection strategies on cycle-by-cycle variability in a gasoline homogeneous charge compression ignition engine: sample entropy analysis, Entropy, vol. 17, pp. 539-559, 2015.
http://dx.doi.org/10.3390/e17020539

E. S. Guerry, M. S. Raihan, K. K. Srinivasan, S. R. Krishnan, and A. Sohail, Injection timing effects on partially premixed diesel–methane dual fuel low temperature combustion, Applied Energy, vol. 162, pp. 99-113, 2016.
http://dx.doi.org/10.1016/j.apenergy.2015.10.085

T. Hashizume, T. Miyamoto, A. Hisashi, and K. Tsujimura, Combustion and emission characteristics of multiple stage diesel combustion, SAE Technical Paper 0148-7191, 1998.
http://dx.doi.org/10.4271/980505

J. Hunicz, M. S. Geca, P. Kordos, and H. Komsta, An experimental study on a boosted gasoline HCCI engine under different direct fuel injection strategies, Experimental Thermal and Fluid Science, vol. 62, pp. 151-163, 2015.
http://dx.doi.org/10.1016/j.expthermflusci.2014.12.014

S. S. Nathan, J. Mallikarjuna, and A. Ramesh, An experimental study of the biogas–diesel HCCI mode of engine operation, Energy Conversion and Management, vol. 51, pp. 1347-1353, 2010.
http://dx.doi.org/10.1016/j.enconman.2009.09.008

C. Lee and K. Lee, An experimental study of the combustion characteristics in SCCI and CAI based on direct-injection gasoline engine, Experimental Thermal and Fluid Science, vol. 31, pp. 1121-1132, 2007.
http://dx.doi.org/10.1016/j.expthermflusci.2006.12.003

S. Saravanan, K. Pitchandi, and G. Suresh, An experimental study on premixed charge compression ignition-direct ignition engine fueled with ethanol and gasohol, Alexandria Engineering Journal, vol. 54, pp. 897-904, 2015.
http://dx.doi.org/10.1016/j.aej.2015.07.010

T. Gatts, S. Liu, C. Liew, B. Ralston, C. Bell, and H. Li, An experimental investigation of incomplete combustion of gaseous fuels of a heavy-duty diesel engine supplemented with hydrogen and natural gas, International Journal of Hydrogen Energy, vol. 37, pp. 7848-7859, 2012.
http://dx.doi.org/10.1016/j.ijhydene.2012.01.088

M. Sjöberg, L.-O. Edling, T. Eliassen, L. Magnusson, and H.-E. Ångström, GDI HCCI: effects of injection timing and air swirl on fuel stratification, combustion and emissions formation, SAE Technical Paper 0148-7191, 2002.
http://dx.doi.org/10.4271/2002-01-0106

M. Masood, M. Ishrat, and A. Reddy, Computational combustion and emission analysis of hydrogen–diesel blends with experimental verification, International Journal of Hydrogen Energy, vol. 32, pp. 2539-2547, 2007.
http://dx.doi.org/10.1016/j.ijhydene.2006.11.008


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize