Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis and Characterization of a Novel Mg-Zn-Zr-Cu Alloy by Powder Metallurgy Technique


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v11i8.12917

Abstract


The present study attempts to fabricate a novel quaternary Mg-Zn-Zr-Cu alloy for high strength applications in automotive industry. The nominal composition of the alloy was made as Mg - 3.0 wt.% Zn - 0.7 wt.% Zr – 1 wt.% Cu. Powder Metallurgy technique (PM) was adopted where the sintering of the compacted specimens was carried out at 450ºC and subsequently hot extruded. Hot extruded samples after stress relieving were then subjected to different characterization studies. The results indicated some notable improvement in metallurgical and mechanical properties of Mg-3.0Zn-0.7Zr-1.0Cu alloy in comparison with Pure Mg. A fair distribution of grains was evident from the microstructural examination. This along with restricted localized matrix deformation enhanced the micro hardness of Mg-3.0Zn-0.7Zr-1.0Cu alloy. Mg-3.0Zn-0.7Zr-1.0Cu alloy sintered at 450ºC exhibited low porosity, superior micro hardness value (78 HV), tensile yield strength (170 MPa), ultimate tensile strength (244 MPa) and good tensile elongation (7.8%). Thus, it can be inferred that Mg alloys with superior properties can be successfully developed using powder metallurgy process followed by hot extrusion.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Mg-Zn-Zr-Cu Alloy; Powder Metallurgy; Hot Extrusion; Mechanical Properties

Full Text:

PDF


References


Polmear, I., 2005. Light alloys: from traditional alloys to nanocrystals. Butterworth-Heinemann.

Ciach, R. ed., 2013. Advanced light alloys and composites (Vol. 59). Springer Science & Business Media.

Hussey, R. J. and Wilson, J., 2013. Light Alloys: Directory and Databook. Springer Science & Business Media.

Gupta, M. and Ling, S. N. M., 2011. Magnesium, magnesium alloys, and magnesium composites. John Wiley & Sons.

Shackelford, J. F. and Muralidhara, M. K., 2005. Introduction to materials science for engineers.

Srivatsan, T. S., Vasudevan, S. and Petrorali, M., 2008. An investigation of the quasi-static fracture behavior of a rapidly solidified magnesium alloy. Journal of Alloys and Compounds, 460(1), pp.386-391.
http://dx.doi.org/10.1016/j.jallcom.2007.06.079

Nguyen, Q. B. and Gupta, M., 2008. Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. Journal of Alloys and Compounds, 459(1), pp.244-250.
http://dx.doi.org/10.1016/j.jallcom.2007.05.038

Mondal, A. K., Rao, B. C. and Kumar, S., 2007. Wear behaviour of AE42+ 20% saffil Mg-MMC. Tribology International, 40(2), pp.290-296.
http://dx.doi.org/10.1016/j.triboint.2005.09.016

Davis, J. R., 1990. ASM Handbook: Nonferrous Alloys and Special-Purpose Material, Vol. 2. Ohio, USA.
http://dx.doi.org/10.1002/maco.19950460815

Westengen, W., 2008. Magnesium: Alloying. Encyclopedia of Materials: Science and Technology, pp.4739-4743.
http://dx.doi.org/10.1016/b0-08-043152-6/00825-1

Hassan, S. F., Ho, K. F. and Gupta, M., 2004. Increasing elastic modulus, strength and CTE of AZ91 by reinforcing pure magnesium with elemental copper. Materials Letters, 58(16), pp.2143-2146.
http://dx.doi.org/10.1016/j.matlet.2004.01.011

Hirai, K., Somekawa, H., Takigawa, Y. and Higashi, K., 2005. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Materials Science and Engineering: A, 403(1), pp.276-280.
http://dx.doi.org/10.1016/j.msea.2005.05.028

Properties, A. H., 1990. Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2. ASM International, Materials, Park, OH.
http://dx.doi.org/10.1016/0142-1123(92)90108-o

El-Amoush, A. S., 2008. Effect of aluminum content on mechanical properties of hydrogenated Mg–Al magnesium alloys. Journal of Alloys and Compounds, 463(1), pp.475-479.
http://dx.doi.org/10.1016/j.jallcom.2007.09.060

Trojanová, Z., Gärtnerová, V., Jäger, A., Námešný, A., Chalupová, M., Palček, P. and Lukáč, P., 2009. Mechanical and fracture properties of an AZ91 Magnesium alloy reinforced by Si and SiC particles. Composites Science and technology, 69(13), pp.2256-2264.
http://dx.doi.org/10.1016/j.compscitech.2009.06.016

Wang, J., Ding, Z., Qi, F., Zhu, H. and Fan, Y., 2010. Effects of antimony addition on the microstructures of ZA84 magnesium alloy. Journal of Alloys and Compounds, 507(1), pp.322-325.
http://dx.doi.org/10.1016/j.jallcom.2010.07.191

Yang, M., Zhu, Y., Liang, X. and Pan, F., 2011. Effects of Gd addition on as-cast microstructure and mechanical properties of Mg–3Sn–2Ca magnesium alloy. Materials Science and Engineering: A, 528(3), pp.1721-1726.
http://dx.doi.org/10.1016/j.msea.2010.11.007

Wang, Y., Wu, G., Liu, W., Pang, S., Zhang, Y. and Ding, W., 2014. Effects of chemical composition on the microstructure and mechanical properties of gravity cast Mg–xZn–yRE–Zr alloy. Materials Science and Engineering: A, 594, pp.52-61.
http://dx.doi.org/10.1016/j.msea.2013.11.040

Yu, H., Kim, Y.M., You, B.S., Yu, H.S. and Park, S.H., 2013. Effects of cerium addition on the microstructure, mechanical properties and hot workability of ZK60 alloy. Materials Science and Engineering: A, 559, pp.798-807.
http://dx.doi.org/10.1016/j.msea.2012.09.026

Buha, J. and Ohkubo, T., 2008. Natural aging in Mg-Zn (-Cu) alloys. Metallurgical and Materials Transactions A, 39(9), p.2259.
http://dx.doi.org/10.1007/s11661-008-9545-y

Zhu, H. M., Sha, G., Liu, J. W., Wu, C. L., Luo, C. P., Liu, Z. W., Zheng, R.K. and Ringer, S.P., 2011. Microstructure and mechanical properties of Mg–6Zn–xCu–0.6 Zr (wt.%) alloys. Journal of Alloys and Compounds, 509(8), pp.3526-3531.
http://dx.doi.org/10.1016/j.jallcom.2010.12.165

Zhu, H. M., Luo, C. P., Liu, J. W. and Jiao, D. L., 2014. Effects of Cu addition on microstructure and mechanical properties of as-cast magnesium alloy ZK60. Transactions of Nonferrous Metals Society of China, 24(3), pp.605-610.
http://dx.doi.org/10.1016/s1003-6326(14)63101-0

Pan, H., Pan, F., Wang, X., Peng, J., She, J., Zhao, C., Huang, Q., Song, K. and Gao, Z., 2014. High conductivity and high strength Mg–Zn–Cu alloy. Materials Science and Technology, 30(7), pp.759-764.
http://dx.doi.org/10.1179/1743284713y.0000000400

Zhou, Y. J., Jiang, A. Y. and Liu, J. X., 2013. The Effect of Sintering Temperature to the Microstructure and Properties of AZ91 Magnesium Alloy by Powder Metallurgy. In Applied Mechanics and Materials (Vol. 377, pp. 250-254). Trans Tech Publications.
http://dx.doi.org/10.4028/www.scientific.net/amm.377.250

Stevenson, A., 1991. Heat treating of magnesium alloys. ASM International, ASM Handbook., 4, pp.899-906.
http://dx.doi.org/10.1007/s13632-013-0107-3

ASTM E384-16, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA, 2016, www.astm.org.
http://dx.doi.org/10.1002/ep.670180104

ASTM E8 / E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, www.astm.org.
http://dx.doi.org/10.1520/jte20160385

Seetharaman, S., Subramanian, J., Tun, K. S., Hamouda, A. S. and Gupta, M., 2013. Synthesis and characterization of nano boron nitride reinforced magnesium composites produced by the microwave sintering method. Materials, 6(5), pp.1940-1955.
http://dx.doi.org/10.3390/ma6051940

Gupta, M. and Ling, S. N. M., 2011. Magnesium, magnesium alloys, and magnesium composites. John Wiley & Sons.
http://dx.doi.org/10.1002/9780470905098

Goh, C. S., Wei, J., Lee, L. C. and Gupta, M., 2007. Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Materialia, 55(15), pp.5115-5121.
http://dx.doi.org/10.1016/j.actamat.2007.05.032

Tun, K. S., Jayaramanavar, P., Nguyen, Q. B., Chan, J., Kwok, R. and Gupta, M., 2012. Investigation into tensile and compressive responses of Mg–ZnO composites. Materials Science and Technology, 28(5), pp.582-588.
http://dx.doi.org/10.1179/1743284711y.0000000108

Gupta, M. and Wong, W. L. E., 2005. Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scripta Materialia, 52(6), pp.479-483.
http://dx.doi.org/10.1016/j.scriptamat.2004.11.006

Rollett, A., Humphreys, F. J., Rohrer, G. S. and Hatherly, M., 2004. Recrystallization and related annealing phenomena. Elsevier.
http://dx.doi.org/10.1016/b978-0-08-098235-9.00012-4

Mabuchi, M., Kubota, K. and Higashi, K., 1994. Effect of hot extrusion on mechanical properties of a Mg- Si- Al alloy. Materials Letters, 19(5-6), pp.247-250.
http://dx.doi.org/10.1016/0167-577x(94)90165-1

Rajmohan, T., Palanikumar, K. and Arumugam, S., 2014. Synthesis and characterization of sintered hybrid aluminium matrix composites reinforced with nanocopper oxide particles and microsilicon carbide particles. Composites Part B: Engineering, 59, pp.43-49.
http://dx.doi.org/10.1016/j.compositesb.2013.10.060

Ma, C. J., Liu, M., Wu, G. H., Ding, W. J. and Zhu, Y. P., 2004. Microstructure and mechanical properties of extruded ZK60 magnesium alloy containing rare earth. Materials science and technology, 20(12), pp.1661-1665.
http://dx.doi.org/10.1179/026708304225012233

Oh-Ishi, K., Mendis, C. L., Homma, T., Kamado, S., Ohkubo, T. and Hono, K., 2009. Bimodally grained microstructure development during hot extrusion of Mg–2.4 Zn–0.1 Ag–0.1 Ca–0.16 Zr (at.%) alloys. Acta Materialia, 57(18), pp.5593-5604.
http://dx.doi.org/10.1016/j.actamat.2009.07.057

Zhang, M., Zhang, W. Z., Yuan, G. Y. and Zhao, Q. L., 2007. Microstructure and precipitates in Mg-Zn-Y alloys. In Materials science forum (Vol. 546, pp. 203-206). Trans Tech Publications.
http://dx.doi.org/10.4028/www.scientific.net/msf.546-549.203

Yu, W., Liu, Z., He, H., Cheng, N. and Li, X., 2008. Microstructure and mechanical properties of ZK60–Yb magnesium alloys. Materials Science and Engineering: A, 478(1), pp.101-107.
http://dx.doi.org/10.1016/j.msea.2007.09.027

Zhou, H. T., Zhang, Z. D., Liu, C. M. and Wang, Q. W., 2007. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy. Materials Science and Engineering: A, 445, pp.1-6.
http://dx.doi.org/10.1016/j.msea.2006.04.028

Liao, Y. G., Han, X. Q., Zeng, M. X. and Jin, M., 2015. Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy. Materials & Design, 66, pp.581-586.
http://dx.doi.org/10.1016/j.matdes.2014.05.003


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize