Open Access Open Access  Restricted Access Subscription or Fee Access

The Effect of Stress Amplitude and Ratio on Crack Growth Behaviour in Fibre Metal Laminate


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v11i11.12634

Abstract


A series of investigations is carried out to understand the crack growth behaviour under various stress ratios and amplitudes of cyclic load, respectively, on fibre metal laminates (FML) composites. The results of the investigation show that the increase of the stress ratio reduces the fatigue life and increases the crack growth rate of the composite. These relate to the displacement on every material forming the composite and to the delamination in the zone nearby the crack tip when the composite was cycled under constant cyclic load. Besides this, fibre-epoxy bridging contributes to lower the crack growth rate. The bridging occurs if the displacement between the monolithic aluminium and the fibre-epoxy is not too different.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Crack Growth; FML Composite; Stress Ratio; Stress Amplitude

Full Text:

PDF


References


Robert M. Jones, Mechanics of Composite Materials (2nd edition, Taylor & Francis Inc., 1999).

Stephens, R.I., Fatemi, A., Stephens, R.R., Fuchs, H.O., Metal Fatigue in Engineering(1st edition, John Wiley & Sons, 2001.)

Barsom, J.M., Rofle S.T., Fracture and fatigue control in structure (3rd edition, ASTM, 1999).
http://dx.doi.org/10.1520/mnl41-3rd-eb

R. Jones, A. J. Kinloch, W. Hu., Cyclic-fatigue crack growth in composite and adhesively-bonded structures: The FAA slow crack growth approach to certification and the problem of similitude, International Journal of Fatigue, Vol. 88, pp. 10-18, 2016.
http://dx.doi.org/10.1016/j.ijfatigue.2016.03.008

Sadananda, K., Vasudevan, A. K., Holtz, R. L., Lee E. U., Analysis of overload effects and related phenomena. International Journal of Fatigue, Vol. 21, n. 1S, pp. S233–S246, 1999.
http://dx.doi.org/10.1016/s0142-1123(99)00094-8

Makabe, C., Purnowidodo, A., Miyazaki, T., Mc.Evily, A. J., Deceleration and acceleration of crack propagation after an overloading under negative baseline stress ratio. Journal Testing and Evaluation, Vol. 33, n. 5, pp. 181–187, 2005.
http://dx.doi.org/10.1520/jte12610

Purnowidodo, A., Makabe. C., Miyazaki, T., Mc.Evily, A. J., Transition behavior of residual fatigue life after applying overload during fatigue crack growth with constant stress amplitude, Proceeding of Pressure vessel and piping codes and standards, San Diego, USA, 2004, pp. 39–44.
http://dx.doi.org/10.1115/pvp2004-2671

Bao, H., Mc.Evily, A. J., The Effect of Overload on the Rate of Crack Propagation under Plane Stress Conditions. Metallurgical and Materials A, Vol.26, n. 7, pp. 1725-1733, 1995.
http://dx.doi.org/10.1007/bf02670759

Mc.Evily, A. J., Yang, Z., The nature of the two opening levels following an overload in fatigue crack growth. Metal Transaction A, Vol. 21, n. 10, pp. 2717–2727, 1990.
http://dx.doi.org/10.1007/bf02646067

Makabe, C., Purnowidodo, A., Mc.Evily, A. J., Effects of surface deformation and crack closure on fatigue crack propagation after overloading and underloading. International Journal of Fatigue, Vol. 26, n. 12, pp. 1341–1348, 2004.
http://dx.doi.org/10.1016/j.ijfatigue.2004.03.017

Ward-Close M., Blom A. F., Ritchie R. O.., Mechanisms associated with transient fatigue crack growth under variable-amplitude loading: an experimental and numerical study. Engineering Fracture Mechanics, Vol. 32, pp. 613–38. 1989.
http://dx.doi.org/10.1016/0013-7944(89)90195-1

Anindito, P., Rudy, S., Choiron, M. A., The effect of Hold Time of Overload on Crack Propagation Behavior Emerging from Notch Root, FME Transactions, Vol. 44, n. 1, pp. 50-57, 2016.
http://dx.doi.org/10.5937/fmet1601050p

Anindito, P., Makabe, C., The crack growth behavior after overloading on rotating bending fatigue, Engineering Failure Analysis, Vol. 6, n. 7, pp. 2245-2254, 2009.
http://dx.doi.org/10.1016/j.engfailanal.2009.03.015

Yi Huang, Jianzhong Liu, Xiao Huang, Jiazhen Zhang, Guangquan Yue, Delamination and fatigue crack growth behavior in Fiber Metal Laminates (Glare) under single overloads, International Journal of Fatigue, Vol. 78, n. 8, pp. 53-60. 2015.
http://dx.doi.org/10.1016/j.ijfatigue.2015.04.002

S. U. Khan, R. C. Alderliesten, R. Benedictus, Delamination in Fiber Metal Laminates (GLARE) during fatigue crack growth under variable amplitude loading, International Journal of Fatigue, Vol. 33, n. 8, pp. 1292-1303, 2011.
http://dx.doi.org/10.1016/j.ijfatigue.2011.04.002

Jianyu Zhang, Lei Peng, Libin Zhao, Binjun Fei, Fatigue delamination growth rates and thresholds of composite laminates under mixed mode loading, International Journal of Fatigue, Vol. 40, pp. 7-15, 2012.
http://dx.doi.org/10.1016/j.ijfatigue.2012.01.008

Kikukawa, M., Jono, M., Tanaka, K., Takatani, Measurement of fatigue crack propagation and crack closure at low stress intensity level by unloading elastic compliance method, J. Society of Materials Science Japan, Vol. 25, n. 276, pp. 899-903, 1976.

Anindito, P., Singo, F., Akihide, S. and Makabe, C. Crack Growth Behavior in Overloaded Specimens with Sharp Notch in Low Carbon Steel, Journal of Testing Evaluation, Vol. 35, n.5, pp.463-468, 2007.
http://dx.doi.org/10.1520/jte100097

Anindito, P., Ari, W., Rudy, S., The Effect of Residual Stress State in the Notch Root Region Caused by the Hold Period of the Overload to the Fatigue Life, International Journal of Engineering and Technology, Vol. 7, n. 6, pp. 2189-2201, 2016.

Alshoaibi, A., Ariffin, A., Finite Element Modeling of Fatigue Crack Propagation Using a Self Adaptive Mesh Strategy, (2015) International Review of Aerospace Engineering (IREASE), 8 (6), pp. 209-215.
http://dx.doi.org/10.15866/irease.v8i6.8823

Aboura, A., Seddak, A., Abascal, J., Effect of Microstructure on Crack Propagation of AISI304L Stainless Steel Pre-charged in Hydrogen, (2015) International Review of Civil Engineering (IRECE), 6 (5), pp. 112-116.
http://dx.doi.org/10.15866/irece.v6i5.7975

Pavlou, D., Fatigue Crack Deflection-Induced Retardation Based on the Principle of the Minimum Potential Energy, (2015) International Review of Mechanical Engineering (IREME), 9 (3), pp. 324-330.
http://dx.doi.org/10.15866/ireme.v9i3.6153

Benkheira, S., Abdelaziz, Y., Crack-Tip Singularity Growth Modeling without Remeshing, (2016) International Review of Mechanical Engineering (IREME), 10 (1), pp. 18-24.
http://dx.doi.org/10.15866/ireme.v10i1.6844


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize