Open Access Open Access  Restricted Access Subscription or Fee Access

Fatigue Life Analysis of Dented Pipes Subjected to Internal Pressure


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v11i8.12089

Abstract


Steel pipelines that transport pressurized fluids can contain a dent defect which is a permanent deformation of the outer wall due to an impact with a foreign body. This defect induces a high local stress concentration. This paper presents an optimized numerical model based on finite elements to assess the stress concentration factor around constrained and unconstrained dents in an API X52 steel pipe subjected to internal pressure. The simulation of the finite element model is conducted in two phases; the first phase concerns the realization of the dent, while the second one takes as initial geometry the dented pipe and subjects it to an internal pressure. The validation results of this finite element model show that it can precisely provide Von Mises stress around the defect needed to calculate the stress concentration factor. The fatigue life is then estimated based on S-N curves with the Gerber criterion to account for the mean stress effect for various pipe geometries, dent depths and dent types. These dents are generated using spherical and rectangular indenters in longitudinal and transverse orientations under constrained and unconstrained configurations. A parametric study conducted on 150 cases of dented pipes subjected to internal pressure between 0% and 50% MOP (maximum operating pressure) enabled us to analyze the effect of the various types of dents on the integrity of the structure.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Pipe; Dent; Harmfulness; Fatigue Life; Cyclic Internal Pressure; Finite Element Method; Stress Concentration Factor

Full Text:

PDF


References


A. Cosham, P. Hopkins, The effect of dents in pipelines-guidance in the pipeline defect assessment manual, International Journal of Pressure Vessels and Piping. Vol. 81, pp. 127–139, 2004.
http://dx.doi.org/10.1016/j.ijpvp.2003.11.004

S. P. Belonos, R. S. Ryan, Dents in Pipe, The Oil & Gas Journal, Vol. 56, November 17, pp.151-161, 1958.
http://dx.doi.org/10.1002/9781119019213.ch14

M. Baker, Dent Study (TTO Number 10, Delivery Order: DTRS56-02-D-70036, Integrity Management Program. Office of Pipeline Safety, 2004).
http://dx.doi.org/10.1061/40690(2003)98

T. H. Hyde, R. Luo, A. A. Becker, Elastic–plastic response of unpressurised pipes subjected to axially-long radial indentation, International Journal of Mechanical Sciences. Vol. 47, pp. 1949-1971, 2005.
http://dx.doi.org/10.1016/j.ijmecsci.2005.07.004

T. H. Hyde, R. Luo, A. A. Becker, Elastic–plastic analysis of offset indentations on unpressurised pipes, International Journal of Solids and Structures. Vol. 44, pp. 399–418, 2007.
http://dx.doi.org/10.1016/j.ijsolstr.2006.04.040

T. H. Hyde, R. Luo, A. A. Becker, Analysis of stresses in pipes indented by long external indentations and subsequent stress variations due to pressure fluctuations, International Journal of Pressure Vessels and Piping, Vol. 86, n. 7, pp. 428-434, 2009.
http://dx.doi.org/10.1016/j.ijpvp.2009.01.001

M. Allouti, C. Schmitt, G. Pluvinage, J. Gilgert, S. Hariri, Study of the influence of dent depth on the critical pressure of pipeline, Engineering Failure Analysis. Vol. 21, pp. 40-51, 2012.
http://dx.doi.org/10.1016/j.engfailanal.2011.11.011

B. Bolton, V. Semiga, S. Tiku, A. Dinovitzer, J. Zhou, Full scale cyclic fatigue testing of dented pipelines and development of a validated dented pipe finite element model, 8th International Pipeline Conference, Alberta, Canada, 2010.
http://dx.doi.org/10.1115/ipc2010-31579

L. Zahiri, Z. Mighouar, K. Mansouri, B. Salhi, Etude numérique de comparaison de méthodes de prédiction du coefficient de concentration de contrainte dans un tube enfoncé sous pression interne. 9th international congress for applied mechanics, JET2016, Hammamet, Tunis, 2016, pp. 139-145.
http://dx.doi.org/10.1159/000427004

C. R. Alexander, J. F. Kiefner, Effects of smooth and rock dents on liquid petroleum pipelines, API publication 1156, Washington, USA, 1997.
http://dx.doi.org/10.1115/pvp2002-1268

A. J. Rinehart, P. B. Keating, Stress concentration solution for a 2d dent in an internally pressurized cylinder. Journal of Engineering Mechanics, Vol. 133, n.7, pp. 792-800, 2007.
http://dx.doi.org/10.1061/(asce)0733-9399(2007)133:7(792)

P. B. Keating and R. L. Hoffman, Fatigue Behavior of Dented Petroleum Pipelines (Task 4), Office to the Office of Pipeline Safety, U. S. Department of Transportation, Texas A&M University, May 1997.
http://dx.doi.org/10.1115/ipc2014-33445

R. Akbari Alashti, S. Jafari, S. J. Hosseinipour, Load Bearing Capacity of a Dented Aluminum Pipe Subjected to Internal Pressure Considering the Effect of Ductile Damage, Latin American Journal of Solids and Structures, Vol. 12, n. 2, pp. 355-384, 2015.
http://dx.doi.org/10.1590/1679-78251383

A. Rafi, Structural behaviour of dented pipelines, Ph.D. dissertation, University of Windsor, Windsor, 2011.
http://dx.doi.org/10.1093/benz/9780199773787.article.b00097921

C. R. Alexander, J. F. Kiefner, Effect of smooth and rock dents on liquid petroleum pipelines (Phase II), API Publication 1156, USA, 1999.
http://dx.doi.org/10.6028/nist.ir.5479

S. B. Cunha, I. Pasqualino, B. Pinheiro, Stress-life fatigue assessment of pipelines with plain dents, Fatigue & Fracture of Engineering Materials & Structures, Vol. 32, pp. 961-974, 2009.
http://dx.doi.org/10.1111/j.1460-2695.2009.01396.x

L. Tóth, S.Ya. Yarema, Formation of the science of fatigue of metals. Part 1, Material Science, Vol. 42, n. 5, pp. 673-680, 2006.
http://dx.doi.org/10.1007/s11003-006-0132-3

L. P. Pook, Metal fatigue, Springer Science & Business Media, (Springer, 2007, pp. 18).
http://dx.doi.org/10.1007/978-94-015-3483-3_2

P. P. Milella, Fatigue and Corrosion in Metals. Springer (Springer, pp. 246-257, 2013).
http://dx.doi.org/10.1007/978-88-470-2336-9

T. Wehner, A. Fatemi, Effects of mean stress on fatigue behaviour of a hardened carbon steel, International Journal of Fatigue, pp. 241-248, 1991.
http://dx.doi.org/10.1016/0142-1123(91)90248-w

Alshoaibi, A., Ariffin, A., Finite Element Modeling of Fatigue Crack Propagation Using a Self Adaptive Mesh Strategy, (2015) International Review of Aerospace Engineering (IREASE), 8 (6), pp. 209-215.
http://dx.doi.org/10.15866/irease.v8i6.8823

Bakkari, M., Lemmini, F., Gueraoui, K., Recovery Heat Loss of a Pottery Kiln, (2016) International Review of Civil Engineering (IRECE), 7 (3), pp. 74-78.
http://dx.doi.org/10.15866/irece.v7i3.9417

Jatti, V., Singh, T., Modeling, Simulation and Experimental Validation of Electric Discharge Machining of NiTi Alloys, (2015) International Review on Modelling and Simulations (IREMOS), 8 (2), pp. 165-170.
http://dx.doi.org/10.15866/iremos.v8i2.5690

S. Ghosh, B. Dennis, Z. Han, Numerical Investigation of Moisture Diffusion Effects on Underfill within Flip-Chip Packages, (2014) International Journal on Numerical and Analytical Methods in Engineering (IRENA), Vol. 2, n. 6, pp. 203-209, 2014.

UK Department of Energy, Offshore Installation: Guidance on Design and Construction, Department of Energy (DOE), 1984.
http://dx.doi.org/10.1533/9780857090638.4.479

M. J. Rosenfeld, 1997, Development of a Model for Fatigue Rating Shallow Unrestrained Dents, PRCI Report PR- 218-9405, Catalog No. L51741. Pipeline Research Council International, 1997.
http://dx.doi.org/10.1115/ipc2002-27244

DIN 2413 Part 1, 1993, Design of Steel Pressure Pipes, Deutsche Norm.
http://dx.doi.org/10.3403/bsiso8535

I. Corder, P. Chatain, EPRG recommendations for the assessment of the resistance of pipelines to external damage, Proc. EPRG/PRC 10th Biennial Joint Technical Meeting on Line Pipe Research, Cambridge, UK, 1995.
http://dx.doi.org/10.1002/9783527678679.dg04178

P. Roovers, R. Bood, M. Galli, U. Marewski, M. Steiner, M. Zaréa, EPRG Methods for assessing the tolerance and resistance of pipelines to external damage. Proceedings of the 3rd International Pipeline Technology Conference, Brugge, Belgium, Pipeline Technology, Volume II, 2000, pp. 405-425.
http://dx.doi.org/10.1115/ipc2010-31640

S. B. Cunha, I. Pasqualino, B. Pinheiro, Pipeline plain dent fatigue – A comparison of assessment methodologies, 10th International Pipeline Conference, Calgary, Alberta, Canada, 2014.
http://dx.doi.org/10.1115/ipc2014-33034

B. Pinheiro, I. Pasqualino, Fatigue analysis of damaged steel pipelines under cyclic internal pressure. International Journal of Fatigue, Vol. 31, pp. 962-973, 2009.
http://dx.doi.org/10.1016/j.ijfatigue.2008.09.006

R. E. Peterson, Notch-sensitivity. Metal Fatigue (Edited by G. Sines and J.L. Waisman), pp. 293-306, 1959.
http://dx.doi.org/10.1017/s0368393100071947

O. L. Seng, C. Y. Wing, G. Seet, The elastic analysis of a dent on pressurized pipe. International Journal of Pressure Vessels and Piping, Vol. 38, n. 8, pp. 369-383, 1989.
http://dx.doi.org/10.1016/0308-0161(89)90047-1

J. R. Fowler, C. R. Alexander, P. J. Kovach and al. Cyclic pressure fatigue life of pipelines with plain dents, dents with gouges, and dents with welds. Reports No. PR-201-927 and PR-201-9324. Pipeline Research Committee, American Gas Association, 1994.
http://dx.doi.org/10.1016/b978-075067880-3/50003-9

M. J. Rosenfeld, Investigations of dent rerounding behavior, 2nd international pipeline conference, Calgary, Canada, 1998.

H. H. Lee, Finite Element Simulation with ANSYS Workbench 15, Theory, application, case studies (Schroff Development Corporation, 2014).

J. O. Jajo. Dent behaviour of steel pipes under pressure load, Ph.D. dissertation, University of Windsor, Windsor, 2011.

J. E. Shigley, C. R. Mischke, Mechanical engineering design (5th edition, McGraw-Hill, New York, USA, 1989).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize