Open Access Open Access  Restricted Access Subscription or Fee Access

Systemic Analysis of the Adoption of Electric Vehicle Technologies in Colombia


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v11i4.11493

Abstract


In the new global economy, the transport system has become a central issue to the public policy design. This article presents a model of vehicle technology adoption that determines the probability of technology selection. A system dynamics and Analytic Hierarchy Process (AHP) approach was used to analyze the adoption of electric vehicle technologies from the Colombian market. Previous research has tended to focus on environmental impact rather than the political, economic, and infrastructure one. The model considers the interaction of market share, political, and infrastructure variables that interact in the transport system. The study proves a novel approach related to modeling strategy, segmentation of the Colombian vehicular market, and results of market scenarios, including peace agreements, economic growth, and infrastructure. The results allow us to understand the relevance and impact of alternative policies on penetration of non-conventional technologies (electric vehicles) in Colombia.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Market Adoption Scenarios; Simulation; Electric Vehicles; Policy Assessment; System Dynamics; Analytic Hierarchy Process; Public Policy

Full Text:

PDF


References


B. M. Quintana and J. Rosero, “Modelo de masificación de vehículos eléctricos en Bogotá D.C.,” Universidad Nacional de Colombia, sede Bogotá, 2014.
http://dx.doi.org/10.17533/udea.acbi.v37n103a03

L. Ardila and C. Franco, “Policy analysis to boost the adoption of alternative fuel vehicles in the Colombian market,” 31 st Int. Conf. Syst. Dyn. Soc., no. March, pp. 1–19, 2013.
http://dx.doi.org/10.1016/j.enpol.2007.06.012

T. H. Kwon, “Strategic niche management of alternative fuel vehicles: A system dynamics model of the policy effect,” Technol. Forecast. Soc. Change, vol. 79, no. 9, pp. 1672–1680, 2012.
http://dx.doi.org/10.1016/j.techfore.2012.05.015

A. J. C. Trappey, C. Trappey, C. T. Hsiao, J. J. R. Ou, S. J. Li, and K. W. P. Chen, “An evaluation model for low carbon island policy: The case of Taiwan’s green transportation policy,” Energy Policy, vol. 45, pp. 510–515, 2012.
http://dx.doi.org/10.1016/j.enpol.2012.02.063

Ministerio de Transporte, “Datos estadísticos de automotores registrados en el RUNT,” 2016. [Online]. Available: http://www.runt.com.co/portel/libreria/php/p_estadisticas.php. [Accessed: 01-Jan-2016].

ANDI, Superintendencia de Industria y, Ministerio de Transporte, Colombia, and ProExport, “Caracterización Industria de vehículos final,” Bogotá D.C., Colombia, Tech. Rep.101626, Aug. 2013.
http://dx.doi.org/10.18041/entramado.2016v12n1.23119

P. E. Meyer and J. J. Winebrake, “Modeling technology diffusion of complementary goods: The case of hydrogen vehicles and refueling infrastructure,” Technovation, vol. 29, no. 2, pp. 77–91, 2009.
http://dx.doi.org/10.1016/j.technovation.2008.05.004

N. Ito, K. Takeuchi, and S. Managi, “Willingness-to-pay for infrastructure investments for alternative fuel vehicles,” Transp. Res. Part D Transp. Environ., vol. 18, no. 1, pp. 1–8, 2013.
http://dx.doi.org/10.1016/j.trd.2012.08.004

P. Baptista, M. Tomás, and C. Silva, “Plug-in hybrid fuel cell vehicles market penetration scenarios,” Int. J. Hydrogen Energy, vol. 35, no. 18, pp. 10024–10030, 2010.
http://dx.doi.org/10.1016/j.ijhydene.2010.01.086

M. a. López, S. Martín, J. a. Aguado, and S. De La Torre, “V2G strategies for congestion management in microgrids with high penetration of electric vehicles,” Electr. Power Syst. Res., vol. 104, pp. 28–34, 2013.
http://dx.doi.org/10.1016/j.epsr.2013.06.005

B. Propfe, D. Kreyenberg, J. Wind, and S. Schmid, “Market penetration analysis of electric vehicles in the German passenger car market towards 2030,” Int. J. Hydrogen Energy, vol. 38, no. 13, pp. 5201–5208, 2013.
http://dx.doi.org/10.1016/j.ijhydene.2013.02.049

Y. Geum, S. Lee, and Y. Park, “Combining technology roadmap and system dynamics simulation to support scenario-planning: A case of car-sharing service,” Comput. Ind. Eng., vol. 71, pp. 37–49, 2014.
http://dx.doi.org/10.1016/j.cie.2014.02.007

B. M. Al-Alawi and T. H. Bradley, “Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies,” Renew. Sustain. Energy Rev., vol. 21, pp. 190–203, 2013.
http://dx.doi.org/10.1016/j.rser.2012.12.048

J. P. Davis and C. B. Bingham, “Developing Theory Through Simulation Methods,” Acad Manage Rev, vol. 32, no. 2, pp. 480–499, 2007.
http://dx.doi.org/10.5465/amr.2007.24351453

J. D. Sterman, Business dynamics: Systems Thinking and Modeling for a Complex World, no. December 1999. McGraw-Hill, 2000.
http://dx.doi.org/10.1109/emr.2002.1022404

M. J. Eppstein, D. K. Grover, J. S. Marshall, and D. M. Rizzo, “An agent-based model to study market penetration of plug-in hybrid electric vehicles,” Energy Policy, vol. 39, no. 6, pp. 3789–3802, 2011.
http://dx.doi.org/10.1016/j.enpol.2011.04.007

J. Orjuela, M. M. Herrera, and W. Casilimas, “Impact analysis of transport capacity and food safety in Bogota,” in Workshop Engineering Application, 2015, pp. 7–13.
http://dx.doi.org/10.1109/wea.2015.7370138

S. Y. Park, J. W. Kim, and D. H. Lee, “Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects,” Energy Policy, vol. 39, no. 6, pp. 3307–3315, 2011.
http://dx.doi.org/10.1016/j.enpol.2011.03.021

R. Hein, P. R. Kleindorfer, and S. Spinler, “Valuation of electric vehicle batteries in vehicle-to-grid and battery-to-grid systems,” Technol. Forecast. Soc. Change, vol. 79, no. 9, pp. 1654–1671, 2012.
http://dx.doi.org/10.1016/j.techfore.2012.06.002

M. Mediavilla, C. de Castro, I. Capellán, L. Javier Miguel, I. Arto, and F. Frechoso, “The transition towards renewable energies: Physical limits and temporal conditions,” Energy Policy, vol. 52, pp. 297–311, 2013.
http://dx.doi.org/10.1016/j.enpol.2012.09.033

M. J. Kearney, “Electric Vehicle Charging Infrastructure Deployment: Policy Analysis Using a Dynamic Behavioral Spatial Model,” Thesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, 2011.
http://dx.doi.org/10.1109/psce.2011.5772534

Gillian Harrison, Christian Thiel, An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe, Technological Forecasting and Social Change, Volume 114, January 2017, Pages 165-178.
http://dx.doi.org/10.1016/j.techfore.2016.08.007

I. García and L. J. Miguel, “Is the electric vehicle an attractive option for customers?,” Energies, vol. 5, pp. 71–91, 2012.
http://dx.doi.org/10.3390/en5010071

S. Liu, K. P. Triantis, and S. Sarangi, “A framework for evaluating the dynamic impacts of a congestion pricing policy for a transportation socioeconomic system,” Transp. Res. Part A Policy Pract., vol. 44, no. 8, pp. 596–608, 2010.
http://dx.doi.org/10.1016/j.tra.2010.04.001

H. Haghshenas, M. Vaziri, and A. Gholamialam, “Evaluation of sustainable policy in urban transportation using system dynamics and world cities data: A case study in Isfahan,” Cities, vol. 45, pp. 104–115, 2015.
http://dx.doi.org/10.1016/j.cities.2014.11.003

J.-H. Lewe, L. F. Hivin, and D. N. Mavris, “A multi-paradigm approach to system dynamics modeling of intercity transportation,” Transp. Res. Part E Logist. Transp. Rev., vol. 71, pp. 188–202, 2014.
http://dx.doi.org/10.1016/j.tre.2014.09.011

J. Han and Y. Hayashi, “A system dynamics model of CO2 mitigation in China’s inter-city passenger transport,” Transp. Res. Part D Transp. Environ., vol. 13, no. 5, pp. 298–305, 2008.
http://dx.doi.org/10.1016/j.trd.2008.03.005

H. Vafa-Arani, S. Jahani, H. Dashti, J. Heydari, and S. Moazen, “A system dynamics modeling for urban air pollution: A case study of Tehran, Iran,” Transp. Res. Part D Transp. Environ., vol. 31, pp. 21–36, 2014.
http://dx.doi.org/10.1016/j.trd.2014.05.016

J. K. Lindly and T. a. Haskew, “Impact of electric vehicles on electric power generation and global environmental change,” Adv. Environ. Res., vol. 6, no. 3, pp. 291–302, 2002.
http://dx.doi.org/10.1016/s1093-0191(01)00060-0

T. Ida, K. Murakami, and M. Tanaka, “A stated preference analysis of smart meters, photovoltaic generation, and electric vehicles in Japan: Implications for penetration and GHG reduction,” Energy Res. Soc. Sci., vol. 2, pp. 75–89, 2014.
http://dx.doi.org/10.1016/j.erss.2014.04.005

Y.-H. Cheng, Y.-H. Chang, and I. J. Lu, “Urban transportation energy and carbon dioxide emission reduction strategies,” Appl. Energy, 2015.
http://dx.doi.org/10.1016/j.apenergy.2015.01.126

C. Zhang and C. Qin, “Exploration of the Growing Trend of Electric Vehicles in Beijing with System Dynamics method and Vensim model,” in 32nd International Conference of the System Dynamics Society, 2014.
http://dx.doi.org/10.1002/9781118762745.ch11

I. Dyner and C. Franco, “Consumer´s Bounded Rationality: The case of competitive Energy Markets,” John Wiley & Sons Ltda. InterScience, Medellin, Colombia, 2004.
http://dx.doi.org/10.1002/sres.644

J. Orjuela-Castro, M. Herrera-Ramirez, and W. Adarme-Jaimes, “Warehousing and transportation logistics of mango in Colombia: A system dynamics model,” Rev. Fac. Ing., vol. 26, no. 44, pp. 71–85, 2017.
http://dx.doi.org/10.19053/01211129.v26.n44.2017.5773

Z. J. Li, X. L. Chen, and M. Ding, “Well-to-wheel Energy Consumption and Pollutant Emissions Comparison between Electric and Non-electric Vehicles: a Modeling Approach,” Procedia Environ. Sci., vol. 13, no. 2011, pp. 550–554, 2012.
http://dx.doi.org/10.1016/j.proenv.2012.01.045

J. G. Vilchez, P. Jochem, and W. Fichtner, “Energy Use and Emissions Impacts from Car Technologies Market Scenarios: A Multi-Country System Dynamics Model,” in 33rd Conference of the System Dynamics Society, 2015.
http://dx.doi.org/10.1109/evs.2013.6914829

Ministerio de Transporte, “Transporte en cifras,” Bogotá D.C., Colombia, 2014.
http://dx.doi.org/10.17533/udea.le.n84a05


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize