Open Access Open Access  Restricted Access Subscription or Fee Access

Post-Yield Fracture Behavior of Zeolite-Reinforced High Density Polyethylene Annealed Composite


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v11i1.10542

Abstract


The fracture behavior of annealed composites of zeolite-filled high density polyethylene has been investigated using the essential work of fracture concept. The crack opening displacement (COD) was estimated starting from the essential work of fracture value. The morphology of the fracture surface was examined using the scanning electron microscopy  and the fracture mechanisms were discussed. The results showed that the composite with a 5 wt.% zeolite concentration  has a unique fracture behavior characterized by the highest resistance to crack initiation in accordance with COD but a low resistance to crack propagation. The non-essential work of fracture as the resistance to the stable crack propagation has shown a maximum of 2.5 wt.% of zeolite followed by a sharp drop at a higher content of zeolite indicating a zeolite induced ductile-to-brittle transition. The fractured surface morphology revealed that the zeolite particle clusters arrested the plastic crack growth, which was more effective at 5 wt.% zeolite concentration. At a higher zeolite content, the amount of particle clusters rose, leading to a decrease in the average distance between them. Consequently, a large-scale plastic deformation of the matrix effectively favored the small strain damage and the fracture eventually occurred in the ductile-to-brittle transition.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Essential Work of Fracture; Annealed Composites; Crack Toughness; Zeolite; HDPE

Full Text:

PDF


References


Y. Zhang, K. E. Tanner. Effect of filler surface morphology on the impact behaviour of hydroxyapatite reinforced high density polyethylene composites, Journal of Materials Science: Materials in Medicine, Vol. 19, n. 2, pp 761–766, 2008.
http://dx.doi.org/10.1007/s10856-007-3119-1

N. J. Mokal, M. F. Desai, Calvarial reconstruction using high-density porous polyethylene cranial hemispheres. Indian Journal of Plastic Surgery, 44(33):422-431, 2011.
http://dx.doi.org/10.4103/0970-0358.90812

Y. Zhang, K. E. Tanner, N. Gurav, L. Di Silvio, In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite. Journal of Biomedical Materials Research Part A, Vol. 81, n. 2, pp. 409-17, 2007.
http://dx.doi.org/10.1002/jbm.a.31078

S. Deshpande, A. Munoli, Long-Term Results of High-Density Porous Polyethylene Implants In Facial Skeletal Augmentation: An Indian Perspective, Indian Journal of Plastic Surgery, Vo. 43, n. 1, pp. 34–39, 2010.
http://dx.doi.org/10.4103/0970-0358.63955

L. Jin-Su, K. Min-Suk, J. Seunggon, P. Hong-Ju, O. Seung-Ho, O. Hee-Kyun, Plasma Treated High-Density Polyethylene (HDPE) Medpor Implant Immobilized with rhBMP-2 for Improving the Bone Regeneration, Journal of Nanomaterials, Vol. 2014, n. 1, pp.1-7, 2014
http://dx.doi.org/10.1155/2014/810404

V. Hermán, G. González, K. Noris-Suarez, C. Albano, A. Karam, K. Romero, L. Yndriago, A. Marquez, L. Yndriago, A. Marquez, L. Lozada, Biocompatibility studies of HDPE–HA composites with different HA content, Polymer Bulletin, Vol. 72, n. 12, pp 3083–3095, 2015.
http://dx.doi.org/10.1007/s00289-015-1454-9

R. Cenzi, A. Farina, L. Zuccarino, and F. Carinci, Clinical outcome of 285 Medpor grafts used for craniofacial reconstruction, Journal of Craniofacial Surgery, Vol. 16, n. 4, pp. 526–530, 2005.
http://dx.doi.org/10.1097/01.scs.0000168761.46700.dc

M. Gosau, F. G. Draenert, S. Ihrler, Facial augmentation with porous polyethylene (Medpor)-histological evidence of intense foreign body reaction, Journal of Biomedical Materials Research B: Applied Biomaterials, Vo. 87, n. 1, pp. 83–87, 2008.
http://dx.doi.org/10.1002/jbm.b.31072

T. A. Du Plessis, C. J. Grobbelaar, F. Marais, The Improvement of Polyethylene Prostheses Through Radiation Crosslinking, Radiation Physics and Chemistry, Vol. 9, n (4-6). pp. 647-652, 1977.
http://dx.doi.org/10.1016/0146-5724(77)90178-9

Y. Wang, J. Shi, L. Han, F. Xiang, Crystallization and Mechanical Properties of T-ZnOw/HDPE Composites, Materials Science and Engineering A, Vol. 501, n. (1-2), pp. 220-228, 2009.
http://dx.doi.org/10.1016/j.msea.2008.09.061

R. N. Rothon, Particulate-Filled Polymer Composites, Harlow: Longman Scientific & Technical; New York: J. Wiley & Sons, 1995.
http://dx.doi.org/10.1177/004728759002900116

A. S. Argon, Z. Bartczak, R. E. Cohen, O. K. Muratoglu, Toughening of Plastics, Advances in Modeling and Experiments, Symposium Series 756; R. A, Pearson, H. J. Sue, A. F Yee, Eds.; Acs: Washington, DC, 2000; P 98.
http://dx.doi.org/10.1021/bk-2000-0759

Purnomo, R. Soenoko, Y. S. Irawan, A. Suprapto, Fracture Behavior of Zeolite-filled High Density Polyethylene Based on Energy Partitioning Work of Fracture, International Journal of Applied Engineering Research, Vol. 9, n. 24, pp. 28737-28747, 2014.
http://dx.doi.org/10.5937/fmet1602180p

Purnomo, R. Soenoko, Y. S. Irawan, A. Suprapto, Morphological and Mechanical Properties of Natural Zeolite-High Density Polyethylene Composite, International Journal of Applied Engineering Research , Vol. 10, n. 11, pp. 28001-28012, 2015.
http://dx.doi.org/10.5937/fmet1602180p

Purnomo, R. Soenoko, A. Suprapto, Y. S. Irawan, Impact Fracture Toughness Evaluation by Essential Work of Fracture Method in High Density Polyethylene Filled with Zeolite, FME Transactions, Vol. 44, pp. 180-186, 2016.
http://dx.doi.org/10.5937/fmet1602180p

Purnomo, R. Soenoko, Y. S. Irawan, A. Suprapto, Deformation Under Quasi Static Loading In High Density Polyethylene Filled With Natural Zeolite, Journal of Engineering Science and Technology, inPress.
http://dx.doi.org/10.5937/fmet1602180p

J. Karger-Kocsis, T. Czigány, E. J. Moskala, Thickness Dependence of Work of Fracture Parameters of an Amorphous Copolyester, Polymer, Vol. 38, n. 18, pp. 4587-4593, 1997.
http://dx.doi.org/10.1016/s0032-3861(96)01061-0

S. Hashemi, J. G. Williams, Temperature Dependence of Essential and Nonessential Work of Fracture Parameters for Polycarbonate film, Plastic, Rubber and Composite, Vol. 29, n. 6, pp. 294–302, 2000.
http://dx.doi.org/10.1179/146580100101541102

J. M. Garcia-Martinez, O. Laguna, S. Areso, E. P. Collar, A Dynamic-Mechanical Study of The Role of Succinil-Fluoresceine Grafted Atactic Polypropylene as Interfacial Modifier in Polypropylene/Talc Composites. Effect Of Grafting Degree, European Polymer Journal, Vol. 38, n. 8, pp. 1583-1589, 2002.
http://dx.doi.org/10.1016/s0014-3057(02)00051-4

M. Huda, L. T. Drzal, A. Mohanty, M. Misra, The effect of silane treated and untreated talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fiber/talc hybrid composites, Composites Part B Engineering, Vol. 38, n. 3, pp. 367-379, 2007.
http://dx.doi.org/10.1016/j.compositesb.2006.06.010

P. V. Joseph, K. Joseph, S. Thomas, M. Sarkissova, The Thermal And Crystallisation Studies Of Short Sisal Fibre Reinforced Polypropylene Composites, Composites Part A Applied Science and Manufacturing, Vol. 34, n. 3, pp. 253-266, 2003.
http://dx.doi.org/10.1016/s1359-835x(02)00185-9

J. Koszkul, D. Kwiatkowski, The Influence of Annealing on Dynamical Mechanical Properties of Polyamide 6/Fiber Glass Composites, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 19, n. 2, pp. 16-20, 2006.
http://dx.doi.org/10.1007/bf02355605

A. Yadegari, J. Morshedian, H-A. Khonakdar, U. Wagenknecht, Influence of Annealing on Anisotropic Crystalline Structure of Hdpe Cast Films, Polyolefins Journal, Vol. 3, n. 1, pp. 1-9, 2016.
http://dx.doi.org/10.1039/c6ce00129g

B. Vieille, W. Albouy, L. Chevalier, L. Taleb, About The Influence of Stamping on Thermoplastic-Based Composites for Aeronautical Applications. Composites Part B Engineering, Vol. 45, n. 1, pp. 821–834, 2013.
http://dx.doi.org/10.1016/j.compositesb.2012.07.047

M. G. Huson, W. J. McGill, Transcrystallinity in Polypropylene, Journal of Polymer Science: Polymer Chemistry Edition, Vol. 22, n. 11, pp. 3571-3580, 1984.
http://dx.doi.org/10.1002/pol.1984.170221168

E. Devaux, B. Chabert, Non-isothermal crystallization of glass fibre reinforced polypropylene, Polymer communications, Vol. 31, pp. 391–394, 1990
http://dx.doi.org/10.1016/b978-0-7506-0356-0.50032-0

H. Quan, G. Li Zhong, M-B Yang, R. Huang, On Transcrystallinity in Semi-Crystalline Polymer Composites. Composites Science and Technology, Vol. 65, n. 7-8, pp. 999-1021, 2005.
http://dx.doi.org/10.1016/j.compscitech.2004.11.015

N. Ning, S. Fu, W. Zhang, F. Chen, K. Wang, H. Deng, Q. Yang, Q. Fu, Realizing The Enhancement of Interfacial Interaction In Semicrystalline Polymer/Filler Composites Via Interfacial Crystallization, Progress In Polymer Science, Vol. 37, n. 10, pp. 1425-1455, 2012.
http://dx.doi.org/10.1016/j.progpolymsci.2011.12.005

E. Clutton. Essential work of fracture. In: Moore DR, Pavan A, Williams JG, editors. Fracture mechanics testing methods for polymers, adhesives and composites. Oxford: Elsevier Science, Ltd.; 2001. p. 177–95.
http://dx.doi.org/10.1016/s1566-1369(01)80033-9

K. B. Broberg, Crack-Growth Criteria And Non-Linear Fracture Mechanics, Journal of The Mechanics and Physics of Solids, Vol. 19, n. 6, pp. 407-418, 1971.
http://dx.doi.org/10.1016/0022-5096(71)90008-1

K. B. Broberg, On Stable Crack Growth, Journal of the Mechanics and Physics of Solids, Vol. 23, n. 3, pp. 215-237, 1975.
http://dx.doi.org/10.1016/0022-5096(75)90017-4

B. Cotterell, J. K. Reddel, The Essential Work of Plane Stress Ductile Fracture, International Journal Of Fracture, Vol. 13, n. 3, pp. 267-277, 1977.
http://dx.doi.org/10.1007/bf00019787

Y-W. Mai, B. Cotterell, On The Essential Work of Ductile Fracture in Polymers, International Journal of Fracture, Vol. 32, n. 2, pp. 105-125, 1986.
http://dx.doi.org/10.1007/bf00019787

Y-W. Mai, B. Cotterell, R. Horlyck, G. Vigna, The Essential Work of Plane Stress Ductile Fracture of Linear Polyethylenes, Polymer Engineering and Science, Vol. 27, n. 11, pp. 804-809, 1987.
http://dx.doi.org/10.1002/pen.760271106

R. Lach, K. Schneider, R. Weidisch, A. Janke, A. Knoll, Application of Essential Work of Fracture Concept to Nanostructured Polymer Materials, European Polymer Journal, Vol. 41, n. 2, pp. 383-392, 2005.
http://dx.doi.org/10.1016/j.eurpolymj.2004.09.021

J-L. Yang, Z. Zhang, H. Zhang, The Essential Work of Fracture of Polyamide 66 Filled With TiO2 Nanoparticles, Composites Science and Technology, Vol. 65, n. (15-16), pp. 2374-2379, 2005.
http://dx.doi.org/10.1016/j.compscitech.2005.06.008

S. Hashemi. Fracture toughness evaluation of ductile polymeric films, Journal of Materials Science, Vol. 32, n. 6, pp. 1563-1573, 1997.
http://dx.doi.org/10.1023/a:1018582707419

T. Bárány, T. Czigány, J. Karger-Kocsis. Application of the essential work of fracture (EWF) concept for polymers, related blends and composites: A review. Progress in Polymer Science (Oxford), Vol. 35, n. 10, pp. 1257-1287, 2010.
http://dx.doi.org/10.1016/j.progpolymsci.2010.07.001

S. Hashemi S. Work of fracture of high impact polystyrene (HIPS) film under plane stress conditions, Journal of Materials Science, Vol. 38, n. 14, pp. 3055–3062, 2003.
http://dx.doi.org/10.1023/a:1024752508458

S. Hashemi S, J.G. Williams. Temperature dependence of essential and non-essential work of fracture parameters for polycarbonate film. Plastics, Rubber and Composites, Vol. 29, n. 6, pp. 294–302, 2000.
http://dx.doi.org/10.1179/146580100101541102

F.R. Costa, B.K. Satapathy, U. Wagenknecht, R. Weidisch, G. Heinrich. Morphology and fracture behaviour of polyethylene/Mg–Al layered double hydroxide (LDH) nanocompositess, European Polymer Journal, Vol. 42, n. 9, pp. 2140–2152, 2006.
http://dx.doi.org/10.1016/j.eurpolymj.2006.04.005

B. K. Satapathy, A. Das, A. Patnaik, Ductile-to-brittle transition in cenosphere-filled polypropylene composites, Journal of Materials Science, Vol. 46, n. 6, pp. 1963–1974, 2011
http://dx.doi.org/10.1007/s10853-010-5032-0

Y-W. Mai, B. Cotterell. On the essential work of ductile fracture in polymer, International Journal of Fracture, Vol. 32, n. 2, pp. 105-125, 1986.
http://dx.doi.org/10.1007/bf00019787

H. Chen, Y-W Mai, P. Tong, L.C. Zhang. Numerical simulation of the essential work of fracture method. In: Williams JW, Pavan A, editors. Fracture of polymers, composites and adhesion. ESIS Publication, 27. Amsterdam: Elsevier; p. 175, 2000.
http://dx.doi.org/10.1016/s1566-1369(00)80017-5

A. Arkhireyeva, S. Hashemi, M. O‘Brien. Factors affecting work of fracture of uPVC film. Journal of Materials Science, Vol. 34, n. 24. pp. 5961–5974, 1999
http://dx.doi.org/10.1023/a:1004776627389


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize