Open Access Open Access  Restricted Access Subscription or Fee Access

A Study of Taylor Bubble Shapes in Stagnant Water Affected by Pipe Diameters and the Froude Number


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v11i1.10284

Abstract


The influence of pipe diameters on shapes of an air Taylor bubble in stagnant water is numerically investigated under the conditions on which the Froude number varies with respect to the pipe diameter. Five pipe diameters between 0.0120 and 0.0160 m are selected to study so that the Froude number is a function of the pipe diameter. Since flows in the pipes have high Reynolds number, the k-ε model is employed to predict the behaviors of turbulent flows around a Taylor bubble. An appropriate Taylor bubble shape in each pipe is chosen by considering the pressure distribution of the air inside the bubble. The computational result shows that the Taylor bubble will be slenderer if the pipe diameter is increased owing to the influence of the Froude number. It is also found that all the Taylor bubble shapes in this study are slenderer than that created by Dumitrescu’s model.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Dumitrescu’s Model; Froude Number; CFD; Pipe Diameter; Taylor Bubble; Turbulence

Full Text:

PDF


References


S. Nogueira, M. L. Riethmuler, J.B.L.M. Campos, A.M.F.R. Pinto, Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids, Chemical Engineering Science, Vol. 61, pp. 845-857, 2006.
http://dx.doi.org/10.1016/j.ces.2005.07.038

D. T. Dumitrescu, Strömung an einer luftblase im senkrechten Rohr, Zeitschrift fur Angewandte Mathematik und Mechanik , Vol. 23, pp. 139-149, 1943.
http://dx.doi.org/10.1002/zamm.19430230303

J. D. Bugg, K. Mack, K. S. Rezkallah, A numerical model of Taylor bubbles rising through stagnant liquids in vertical tubes, International Journal of Multiphase Flow, Vol. 24, n. 2, pp. 271-281, 1998.
http://dx.doi.org/10.1016/s0301-9322(97)00047-5

Z. S. Mao, A. E. Dukler, The motion of Taylor bubbles in vertical tubes. I - A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid, Journal of Computational Physics, Vol. 91, n. 1, pp. 132-160, 1990.
http://dx.doi.org/10.1016/0021-9991(90)90008-o

Z. S. Mao, A. E. Dukler, The motion of Taylor bubbles in vertical tubes-II - Experimental data and simulations for laminar and turbulent flow, Chemical Engineering Science, Vol. 46, n. 8, pp. 2055-2064, 1991.
http://dx.doi.org/10.1016/0009-2509(91)80164-t

S. Smith, , T. Taha, Z. Cui, Enhancing hollow fibre ultrafiltration using slug-flow - a hydrodynamic study, Desalination, Vol. 146, pp. 69-74, 2002.
http://dx.doi.org/10.1016/s0011-9164(02)00491-5

T. Taha, Z. F. Cui, Hydrodynamics of slug flow inside capillaries, Chemical Engineering Science, Vol. 59, n. 6, pp. 1181-1190, 2004.
http://dx.doi.org/10.1016/j.ces.2003.10.025

T. C. Thulasidas, M. A. Abraham, R. L. Cerro, Bubble-train flow in capillaries of circular and square cross section, Chemical Engineering Science, Vol. 50, n. 2, pp. 183-199, 1995.
http://dx.doi.org/10.1016/0009-2509(94)00225-g

J. M. Van Baten, R. Krishna, CFD simulation of mass transfer from Taylor bubbles rising in circular capillaries, Chemical Engineering Science, Vol. 59, n. 12, pp. 2535-2545, 2004.
http://dx.doi.org/10.1016/j.ces.2004.03.010

K. Hayashi, R. Kurimoto, A. Tomiyama, Terminal velocity of a Taylor drop in a vertical pipe, International Journal of Multiphase Flow, Vol. 37, pp. 241-251, 2011.
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2010.10.008

E. T. White, R. H. Beardmore, The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes, Chemical Engineering Science, Vol. 17, n. 5, pp. 351-361, 1962.
http://dx.doi.org/10.1016/0009-2509(62)80036-0

B. Lertnuwat, N. Angariya, W. Chaokijka, P. Nuchjaroen, Influence of pipe diameters on shapes of air Taylor bubbles in stagnant water, International Journal of Applied Engineering Research, Vol. 9, n. 21, pp. 11163-11174, 2014.
http://dx.doi.org/10.4028/www.scientific.net/amm.619.18

B. Lertnuwat, N. Angariya, W. Chaokijka, P. Nuchjaroen, Influence of Pipe Diameters on Shapes of Air Taylor Bubbles in Small Pipes Containing Stagnant Water, Applied Mechanics and Materials, Vol. 619, pp. 18-22, 2014.
http://dx.doi.org/10.4028/www.scientific.net/amm.619.18

Mayor, T.S., Pinto, A.M.F.R. and Campos, J.B.L.M., “Hydrodynamics of gas-liquid slug flow along vertical pipes in the laminar regimes-experimental and simulation study,” Industrial & Engineering Chemistry Research, Vol. 46, pp. 3794-3809, 2007.
http://dx.doi.org/10.1021/ie0609923

Mahmud, S., Numerical Investigation of Fluid Flow Past a Hydrofoil in Free Surface Condition, (2014) International Review of Mechanical Engineering (IREME), 8 (6), pp. 1098-1101.
http://dx.doi.org/10.15866/ireme.v8i6.3931

Bekka, N., Bessaïh, R., Sellam, M., Numerical Study of Transonic Flows Using Various Turbulence Models, (2015) International Review of Aerospace Engineering (IREASE), 8 (6), pp. 216-224.
http://dx.doi.org/10.15866/irease.v8i6.8824

J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics (3rd ed., Springer, 2002).
http://dx.doi.org/10.1007/978-3-642-56026-2

D. Merrouche, K. Mohammedi, I. Belaidi, Bubble Two-Phase Flow Simulation with Volume of Fluid Interface Tracking Method, (2015) International Journal on Heat and Mass Transfer - Theory and Applications (IREHEAT), 3 (3), pp. 67-71.

R. V. Hout, D. Bernea, L. Shemer, Evolution of statistical parameters of gas-liquid slug flow along vertical pipes, International Journal of Multiphase Flow, Vol. 27, pp. 1579-1602, 2001.
http://dx.doi.org/10.1016/s0301-9322(01)00016-7

R. V. Hout, D. Bernea, L. Shemer, Evolution of hydrodynamic and statistical parameters of gas-liquid slug flow along inclined pipes, Chemical Engineering Science, Vol. 58, n. 1, pp. 115-133, 2003.
http://dx.doi.org/10.1016/s0009-2509(02)00441-4

L. Shemer, Hydrodynamic and statistical parameters of slug flow, International Journal of Heat and Fluid Flow, Vol. 24, pp. 334-344, 2003.
http://dx.doi.org/10.1016/s0142-727x(03)00024-9

B. Lertnuwat, Model for predicting the head shape of a Taylor bubble rising through stagnant liquids in a vertical Tube, Thammasat International Journal of Science and Technology, Vol. 20, n. 1, pp. 37-46, 2015.
http://dx.doi.org/10.1016/s0301-9322(97)00047-5

P. Aussillous, D. Quéré, Quick deposition of a fluid on the wall of a tube, Physics of Fluids, Vol. 12, n. 10, pp. 2367-2371, 2000.
http://dx.doi.org/10.1063/1.1289396


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize