Open Access Open Access  Restricted Access Subscription or Fee Access

Jerk Trajectory Planning for Assistive and Rehabilitative Mechatronic Devices


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v10i7.10015

Abstract


This paper presents an effective application of Jerk to plan trajectory and control undesirable effects (e.g. patient’s hesitations and tremors) in active rehabilitation training using some mechatronic devices. Jerk is the time derivative of acceleration, and it is associated to the rapidly changing of forces. It is more sensible than other parameters (e.g. speed or acceleration) to intercept undesirable conditions as the patient’s tremors or sub-movements. This study proposes an innovative regulator system based on Minimum Jerk trajectory planning and formulation. The trajectory planning strategy of limb rehabilitation is described considering the clinical therapy requirements and patients’ needs. A case study  based on a path shape that simulates a point-to-point motion is illustrated to demonstrate the effectiveness of the proposed solution. The study presents the kinematic analysis of the mechatronic device and the formulation of the objective function to minimize Jerk along the trajectory. A controller was developed to attenuate the micro sub-movements that recreated the patient hesitations. A set of simulations of the mechatronic model was performed highlighting the reduction of the jerk peak magnitude and the deviation from pre-determined trajectory when the controller was activated, improving the rehabilitation training.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Jerk Trajectory; Micro-Sub Movement Control; Simulation; Active Rehabilitation

Full Text:

PDF


References


M. K. O’Malley, T. Ro, H. S. Levin, Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function, Arch. Phys. Med. Rehabil., Vol. 87, pp. S59–S66, Dec. 2006.
http://dx.doi.org/10.1016/j.apmr.2006.08.332

H. I. Krebs, N. Hogan, M. L. Aisen, B. T. Volpe, Robot-aided neurorehabilitation, IEEE Trans. Rehabil. Eng., Vol. 6, n.1, pp. 75–87, Mar. 1998.
http://dx.doi.org/10.1109/86.662623

N. Hogan, H. I. Krebs, B. Rohrer, S. Fasoli, J. Stein, B. T. Volpe, Technology for recovery after stroke, in Recovery After Stroke, M. P. Barnes, B. H. Dobkin, and J. Bogousslavsky, Eds. Cambridge, U.K.: Cambridge Univ. Press, pp. 604–622, 2005.
http://dx.doi.org/10.1017/cbo9781316135297.024

F. Aggogeri, N. Pellegrini, R. Adamini, Functional Design in Rehabilitation: Modular Mechanisms for Ankle Complex, Applied Bionics and Biomechanics, Volume 2016 (2016), Article ID 9707801
http://dx.doi.org/10.1155/2016/9707801

C. Butefisch, H. Hummelsheim, P. Denzler, K. H. Mauritz, Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand, J. Neurologic. Sci, Vol. 130, pp. 59–68, 1995
http://dx.doi.org/10.1016/0022-510x(95)00003-k

E. Taub, N. E. Miller, T. A. Novack, Technique to improve chronic motor deficit after stroke, Arch. Phys. Med. Rehab, Vol. 74, pp.347–354, 1993.
http://dx.doi.org/10.1161/01.str.30.3.586

S. L. Wolf, D. E. Lecraw, L. A. Barton, B. B. Jann, Forced use of hemiplegic upper extremities to reverse the effect of learned non use among chronic stroke and head-injured patients, Exper. Neurol, Vol. 104 (no 2), pp.125–132, 1989.
http://dx.doi.org/10.1016/s0014-4886(89)80005-6

A. Suderland, D.J. Tinson, E. L. Bradley, D. Fletcher, R. Langton Hewer, D. T. Wade, Enhanced physical therapy improves recovery of arm function after stroke, A randomized controlled trial. J. Neurology. Neurosurg. Psych, Vol. 55, pp. 530–535, 1992.
http://dx.doi.org/10.1136/jnnp.55.7.530

M. Dam, P. Tonin, S. Casson, M. Ermani, G. Pizzolato, V. Iaia, L. Battistin, The effects of long-term rehabilitation therapy on poststroke hemiplegic patients, Stroke, Vol. 24(no 8), pp. 1186–1191, 1993.
http://dx.doi.org/10.1161/01.str.24.8.1186

S. L. Wolf, S. A. Binder-Macleod, Electromyographic biofeedback applications to the hemiplegic patient: Changes in upper extremity neuromuscular and functional status, Physic. Therapy, Vol. 63:1393, 1983.
http://dx.doi.org/10.1016/0003-9993(93)90083-m

L. E. Smith, Restoration of volitional limb movement of hemiplegics following patterned functional electrical stimulations. Percep. Motor Skills Vol. 71, pp. 851–861, 1990.
http://dx.doi.org/10.2466/pms.71.7.775-781

H. I. Krebs, N. Hogan, M. L. Aisen, B. T. Volpe, Robot-aided neurorehabilitation, IEEE Trans Rehab Eng,6, pp. 75–87, 1998.
http://dx.doi.org/10.1109/86.662623

S. Hesse, G. Schulte-Tigges, M. Konrad, Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects, Arch Phys Med Rehabil;84, pp. 915–20, 2003.
http://dx.doi.org/10.1016/s0003-9993(02)04954-7

D. J. Reinkensmeyer, L. E. Kahn, M. Averbuch, Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide, J Rehabil Res Dev, 37, pp. 653–62, 2000.
http://dx.doi.org/10.1007/s00221-002-1340-1

A. H. Stienen, E. E. Hekman, F. C. Van der Helm, Dampace: dynamic force-coordination trainer for the upper extremities, Rehabilitation robotics; ICORR, IEEE 10th International Conference, pp. 820–26, Jun-2007.
http://dx.doi.org/10.1109/icorr.2007.4428519

R. J. Sanchez, J. Liu, S. Rao, Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment, IEEE Trans Neural Syst Rehabil Eng,14, pp. 378–89, 2006.
http://dx.doi.org/10.1109/tnsre.2006.881553

A. Frisoli, L. Borelli, A. Montagner, Arm rehabilitation with a robotic exoskeleleton in virtual reality, ICORR 2007. IEEE 10th International Conference on Rehabilitation robotics, pp. 631–42, Jun-2007.
http://dx.doi.org/10.1109/icorr.2007.4428491

M. Lee, M. Rittenhouse, H. A. Abdullah, Design issues for therapeutic robot systems: results from a survey of physiotherapists, J Intel Robot Syst, 42, pp. 239–52, 2005.
http://dx.doi.org/10.1007/s10846-004-7194-y

M. D. Ellis, T. Sukal, T. DeMott, J.P. Dewald, Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading, Neurorehabil. Neural Repair, Vol. 22, pp. 321–329, 2008.
http://dx.doi.org/10.1177/1545968307313509

P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, S. Leonhardt, A survey on robotic devices for upper limb rehabilitation, Journal of NeuroEngineering and Rehabilitation 11:3, 2014.
http://dx.doi.org/10.1186/1743-0003-11-3

A. Gasparetto, V. Zanotto, A new method for smooth trajectory planning of robot manipulators, Mechanism and Machine Teory, 42, pp 455-471, 2007.
http://dx.doi.org/10.1016/j.mechmachtheory.2006.04.002

F. Amirabdollahian, R. Loureiro, W. Harwin, Minimum jerk trajectory control for rehabilitation and haptic applications, Proc. of 2002 IEEE International Conference on Robotics and Automation, Washington, D.C., 2002.
http://dx.doi.org/10.1109/robot.2002.1014233

K. Shin, N. McKay, Minimum Time Control of Robotic Manipulator with Geometric Path Constraints, IEEE Trans. on Automatic Control, 30(6), pp. 531- 541, 1985.
http://dx.doi.org/10.1109/tac.1985.1104009

A. Piazzi, A. Visioli, Global minimum-time trajectory planning of mechanical manipulators using interval analysis, International Journal of Control, Vol. 71, No. 4, pp. 631-652, 1998.
http://dx.doi.org/10.1080/002071798221713

N. Hogan, An organizing principle for a class of voluntary movements, The Journal of Neuroscience, Vol. 4, pp. 2745-2754, 1984.
http://dx.doi.org/10.1523/jneurosci.1327-05.2005

T. Platz, P. Denzler, B. Kaden, K.H. Mauritz, Motor Learning after Recovery from Hemiparesis, Neuropsychologia, 32(10), pp. 1209–1223, 1994.
http://dx.doi.org/10.1016/0028-3932(94)90103-1

D. Goldvasser, C. A. McGibbon, D. E. Krebs, High curvature and jerk analysis of arm ataxia, Biological Cybernetics; 84, pp. 85–90, 2001.
http://dx.doi.org/10.1007/s004220000201

M.A. Smith, J. Brandt, R. Shadmehr, Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control, Nature, 403, pp. 544–549, 2000.
http://dx.doi.org/10.1038/35000576

R.P. Young, R. G. Marteniuk, Acquisition of a multi-articular kicking task: Jerk analysis demonstrates movements do not become smoother with learning, Human Movement Science, 16(5), pp. 677– 701, 1997.
http://dx.doi.org/10.1016/s0167-9457(97)00010-9

M. Wininger, N.H. Kim, W. Craelius, Spatial resolution of spontaneous accelerations in reaching tasks, Journal of Biomechanics, 42, pp. 29–34, 2009.
http://dx.doi.org/10.1016/j.jbiomech.2008.10.015

K. Erkorkmaz, Y. Altintas, High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation, International Journal of Machine Tools & Manufacture 41, pp. 1323–1345, 2001.
http://dx.doi.org/10.1016/s0890-6955(01)00002-5

M. Tandl, A. Kecskemethy, An object oriented approach for robust guided spatial motion, Proceedings of the IDETC/CIE 2005 Long Beach, California, DETC2005-85407, 2005.
http://dx.doi.org/10.1007/978-1-4020-4941-5_28

F. Aggogeri, A. Borboni, R. Faglia, A. Merlo, S. De Cristofaro, Precision Positioning Systems: an overview of the state of art, Applied Mechanics and Materials, Vol 336-338, p 1170-1173.
http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.1170

S. S. Chiddarwar, N. R. Babu, Coordination strategy for path planning of multiple manipulators in workcell environment, Proceedings of 24th International Symposium on Automation and Robotics in Construction, ISARC 07, Kochi, 19–21 September, pp.185–192, 2007.
http://dx.doi.org/10.1109/robot.1986.1087539

T. Hester, R. Hughes, D. M. Sherrill, B. Knorr, M. Akay, J. Stein, Using wearable sensors to measure motor abilities following stroke, International Workshop on Wearable and Implantable Body Sensor Networks; Cambridge, MA. 35, Apr. 2006.
http://dx.doi.org/10.1109/bsn.2006.57

O. Celik, M. K. O'Malley, C. Boake, H. S. Levin, N. Yozbatiran, T. A. Reistetter, Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 18, no. 4, pp. 433-444, 2010.
http://dx.doi.org/10.1109/tnsre.2010.2047600

J. C. Huegel, A. Lynch, M. K. O’Malley, Validation of a smooth movement model for a human reaching task, in Proc. IEEE Int. Conf. Rehabil. Robot. (ICORR 2009), Kyoto, Japan, pp. 799–804, 2009.
http://dx.doi.org/10.1109/icorr.2009.5209634

T. Flash, N. Hogan, The coordination of Arm Movements : An experimentally confirmed Mathematical Model, The Journal of Neuroscience, Vol. 5, pp. 1688-1703, 1985.
http://dx.doi.org/10.1016/s0304-3940(97)90091-4

S. Oh, Y. Hori, Sensor free power assisting control based on velocity control and disturbance observer, in Proc. of the IEEE International Symposium on Industrial Electronics, Vol.4, pp. 1709-1714, June, 2005.
http://dx.doi.org/10.1109/isie.2005.1529190

R. Loureiro, F. Amirabdollahian, S. Coote, E. Stokes, W. Harwin, Using Haptic Technology to Deliver Motivational Therapies in Stroke Patients: Concepts and Initial Pilot Studies, Euro-Haptics Birmingham, 2001.
http://dx.doi.org/10.1109/robot.2002.1014233


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize