Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical Solution of Stochastic Differential Equations Used in Random Vibration


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v11i1.9800

Abstract


The vibratory environment found in the majority of cases consists of random vibrations. Therefore, each recording of the same phenomena results in a signal different from the previous ones. Such vibrations can be only analyzed in a stochastic manner. In this paper, we present applications of the stochastic differential equations in random vibrations of Mass-Spring-Damper System. The motivation behind stochastic calculus is to define a calculus for situations in which ordinary methods of calculus do not apply due to randomness concerned with the system or the input. In this work, we will construct and implement methods for solving the stochastic differential equation modeling the Mass-Spring-Damper System with disturbances at the source (stochastic input) and stochastic differential equations with random coefficients.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Stochastic Calculus; Wiener Process; Stochastic Differential Equations; Mass-Spring-Damper System; Numerical Solution

Full Text:

PDF


References


C. Lalanne, Mechanical Vibration and Shock Analysis: Random Vibration, Vol 3. ISTE, Willey, 2002.
http://dx.doi.org/10.1002/9781118931158.ch3

M. Grigoriu, Stochastic Calculus: Applications in Science and Engineering, Birkhäuser, 2002.
http://dx.doi.org/10.1007/978-0-8176-8228-6

B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, New York, Sprenger-Verlag, 2000
http://dx.doi.org/10.1007/978-3-662-13050-6_8

E. Kolarova. L.Brancik, Vector Linear Stochastic Differential Equations and their Applications to Electrical Networks, 35th International Conference on Telecommunications and signal processing pp.311-315, 2012.
http://dx.doi.org/10.1109/tsp.2012.6256305

E. Kolarova. L. Brancik, Application of Stochastic Differential Equations in Second-order electrical circuits analysis, Przeglad Elektrotechniczny, Vol. 88, N° 7a, 2012.
http://dx.doi.org/10.1109/tsp.2012.6256305

R. Zeghdane, Dynamique des structures soumises à des solicitations aléatoires: analyse mathématique et resolution numérique des equations différentielles stochastiques, Thèse de doctorat, dissertation, Départemant de mathématiques, Université de Sétif, Avril 2014.
http://dx.doi.org/10.1080/17442508308833257

D. Fajardo, Simulacion de Sistemas Dinamicos Mediante Discretizacion en Espacio de Estados, Revista Sigma, Vol X 2, 2010.
http://dx.doi.org/10.5944/empiria.16.2008.1391

M. Javed, H. Aftab, and M. Qasim, RLC Circuit Response and Analysis (Using State Space Method), IJCSNS International Journal of Computer Science and Network, Vol. 8N°4, April 2008.
http://dx.doi.org/10.1142/9789812810724_0005

A. Lopez, B. Gordillo, M. Badaoui, Solucion Analitica a un Modelo Estocastico del Circuito RC, 15vo Congreso Nacional de Ingenieria Electromecanica y de Sistemas, Articulo No. ELE 12, Octubre 2015.
http://dx.doi.org/10.21151/cnriegos.2016.a10

Y. Saito, T. Mitsui, Solution of Stochastic Differential Equations, Ann. Ins. Statist. Math, Vol.45, N° 3, 1993.
http://dx.doi.org/10.1007/bf00773344

E. Raffo, M. Mejia, Applicaciones Computacionales de las Equaciones Differenciales Estocasticas, Sistemas e Informatica, Junio 2006 .
http://dx.doi.org/10.15381/idata.v9i1.5756

T. Sauer, Computational Solution of Stochastic Differential Equations, Advanced Review, WIREs Comput Stat, 2013
http://dx.doi.org/10.1002/wics.1272

L. Jun, X. Dafu, J. Bingian, Random Structural Dynamic Response Analysis under Random Excitation, qpPeriodica Polytechnica, 2014.
http://dx.doi.org/10.3311/ppci.7523


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize