Open Access Open Access  Restricted Access Subscription or Fee Access

An Analytical Solution for Two-Layered Composite Beams with Imperfect Shear Interaction


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v10i7.9720

Abstract


The authors present an analytical solution for two-layered composite beams with interlayer slip. Timoshenko's kinematic assumptions are used for both layers imposing the constraint of the equal cross-sectional rotations. The connection between the beam components is perfect in normal direction, but the axial displacement field may have a jump. The axial force derived from the imperfect connection is proportional to the relative slip occurring between the layers. The determination of the analytical solution of the considered static problem is based on the fundamental solutions. Linear combination of the fundamental solutions, which are fitted to the given loading and boundary conditions, gives the total solution. Three examples illustrate the applications of the presented analytical method.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Analytical Solution; Imperfect Shear Connection; Timoshenko Beam; Two-Layered Beam

Full Text:

PDF


References


H. Granholm, On composite beams and columns with special regard to nailed structures, (Trans. No. 88. Chalmers University of Technology, Göteborg, Sweden, 1949, in Swedish).
http://dx.doi.org/10.2514/3.13220

N. M. Newmark, C. P. Siess, I. M. Viest, Test and analysis of composite beams with incomplete interaction, Proceedings of the Society of Experimental Stress Analysis, Vol. 9, n. 1, pp. 75-92, 1951.
http://dx.doi.org/10.2208/jscej1969.1977.265_1

P. F. Pleskov, Theoretical Studies of Composite Wood Structures, (Soviet Union, 1952, in Russian).
http://dx.doi.org/10.2307/125691

F. Stüssi, Zusammengesetzte Vollwandträger, IABSE Publications, Vol. 8, pp. 249-269, 1947.
http://dx.doi.org/10.1007/978-3-0348-5202-9_3

I. Ecsedi, A. Baksa, Static analysis of composite beams with weak shear connection, Applied Mathematical Modelling, Vol. 35, n. 4, pp. 1739-1750, 2011.
http://dx.doi.org/10.1016/j.apm.2010.10.006

I. Ecsedi, A. Baksa, Analytical solution for layered composite beams with partial shear interaction based on Timoshenko beam theory, Engineering Structures, Vol. 115, pp. 107-117, 2016.
http://dx.doi.org/10.1016/j.engstruct.2016.02.034

U. A. Girhammar, A simplified analysis method for composite beams with interlayer slip, International Journal of Mechanical Sciences, Vol. 51, n. 7, pp. 515-530, 2009.
http://dx.doi.org/10.1016/j.ijmecsci.2009.05.003

U. A. Girhammar, V. K. A. Gopu, Composite beam-columns with interlayer slip – exact analysis, Journal of Structural Engineering, Vol. 119, n. 4, pp. 1265-1282, 1993.
http://dx.doi.org/10.1061/(asce)0733-9445(1993)119:4(1265)

U. A. Girhammar, D. Pan, Exact static analysis of partially composite beams and beam-columns, International Journal of Mechanical Sciences, Vol. 49, n. 2, pp. 239-255, 2007.
http://dx.doi.org/10.1016/j.ijmecsci.2006.07.005

J. R. Goodman, Layered wood system with interlayer slip, Ph.D. thesis, University of California, Berkeley, CA, 1967.
http://dx.doi.org/10.23846/srs003

J. R. Goodman, E. Popov, Layered wood system with interlayer slip, Wood Science, Vol. 1, pp. 148-158, 1969.
http://dx.doi.org/10.1007/bf00639642

G. Ranzi, M. A. Bradford, B. Uy, A direct stiffness analysis of composite beam with partial interaction, International Journal for Numerical Methods in Engineering, Vol. 61, n. 5, pp. 657-672, 2004.
http://dx.doi.org/10.1002/nme.1091

A. Ayoub, A two-field mixed variational principle for partially connected composite beams, Finite Elements for Analysis and Design, Vol. 37, n. 11, pp. 929-959, 2001.
http://dx.doi.org/10.1016/s0168-874x(01)00076-2

A. Dall’Asta, A. Zona, Slip locking in finite elements for composite beams with deformable shear connection, Finite Elements in Analysis and Design, Vol. 40, n. 13-14, pp. 1907-1930, 2004.
http://dx.doi.org/10.1016/j.finel.2004.01.007

E. G. Thomson, J. R. Goodman, M. D. Vanderbilt, Finite element analysis of layered wood systems, Journal of the Structural Division, Vol. 101, pp. 2659-2672, 1975.
http://dx.doi.org/10.1016/0045-7949(77)90042-6

H. Murakami, A laminated beam theory with interlayer slip, Journal of Applied Mechanics, Transactions ASME, Vol. 51, n. 3, pp. 551-559, 1984.
http://dx.doi.org/10.1115/1.3167673

S. Jiang, X. Zeng, D. Zhou, Novel two-node linear composite beam element with both interface slip and shear deformation into consideration: Formulation and validation, International Journal of Mechanical Sciences, Vol. 85, pp. 110-119, 2014.
http://dx.doi.org/10.1016/j.ijmecsci.2014.05.006

X. Lin, Y. X. Zhang, A novel one-dimensional two-node shear-flexible layered composite beam element, Finite Elements in Analysis and Design, Vol. 47, n. 7, pp. 676-682, 2011.
http://dx.doi.org/10.1016/j.finel.2011.01.010

Q. Nguyen, M. Hjiaj, S. Guezouli, Exact finite element model for shear-deformable two-layer beams with discrete shear connection, Finite Elements in Analysis and Design, Vol. 47, n. 7, pp. 718-727, 2011.
http://dx.doi.org/10.1016/j.finel.2011.02.003

Q. Nguyen, E. Martinelli, M. Hjiaj, Derivation of the exact stiffness matrix for two-layer Timoshenko beam element with partial interaction, Engineering Structures, Vol. 33, n. 2, pp. 298-307, 2011.
http://dx.doi.org/10.1016/j.engstruct.2010.10.006

S. Schnabl, M. Saje, G. Turk, I. Planinc, Locking-free two-layer Timoshenko beam element with interlayer slip, Finite Elements in Analysis and Design, Vol. 43, n. 9, pp. 705-714, 2007.
http://dx.doi.org/10.1016/j.finel.2007.03.002

Y. C. Wang, Deflection of steel-concrete composite beams with partial shear interaction, Journal of Structural Engineering, Vol. 124, n. 10, pp. 1159-1165, 1998.
http://dx.doi.org/10.1061/(asce)0733-9445(1998)124:10(1159)

S. Schnabl, M. Saje, G. Turk, I. Planinc, Analytical solution of two-layer beam taking into account interlayer slip and shear deformation, Journal of Structural Engineering, Vol. 133, n. 6, pp. 886-894, 2007.
http://dx.doi.org/10.1061/(asce)0733-9445(2007)133:6(886)

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity (3rd edition, McGraw-Hill, New York, 1970).
http://dx.doi.org/10.1017/s036839310012471x

I. S. Sokolnikoff, Mathematical Theory of Elasticity (2nd edition, McGraw-Hill, New York, 1970).
http://dx.doi.org/10.1017/s0001924000126375

Djeddi, F., Ghernouti, Y., Abdelaziz, Y., Experimental Investigation of FRP-Concrete Hybrid Beams, (2015) International Review of Civil Engineering (IRECE), 6 (6), pp. 151-155.
http://dx.doi.org/10.15866/irece.v6i6.8187

Mattar, I., FE Model for R.C Beams Strengthened/Retrofitted with FRP, (2015) International Review of Civil Engineering (IRECE), 6 (1), pp. 10-20.
http://dx.doi.org/10.15866/irece.v6i1.6200

Hashemi, S., Roach, A., A Dynamic Finite Element for Coupled Extensional-Torsional Vibration of Uniform Composite Thin-Walled Beams, (2016) International Review of Civil Engineering (IRECE), 7 (4), pp. 114-124.
http://dx.doi.org/10.15866/irece.v7i4.10758


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize