### Robust Pediction of Double Retrograde Vaporization by Numerical Inversion of Functions

^{(*)}

*Corresponding author*

DOI: https://doi.org/10.15866/ireme.v10i6.9561

#### Abstract

Double retrograde vaporization is a thermodynamic phenomenon that occurs in mixtures formed by a solute with low volatility when compared to the solvent. Specially in high pressures, when the mixture reaches a temperature which is higher than the critical temperature of the pure solvent, the phase equilibriumcan exhibit four different solutions (dew point pressures and liquid phase compositions), characterizing a very unique behavior. Because of the difficulty in predictingliquid molar fractions and pressure in which this phenomenon occurs, it makes the problem areal challenge for the supercritical fluid and oil industry. The occurrence of this physical phenomenon will be illustrated in a binary system formed by ethane + limonene. Under certain conditions, the problem can be modelled through a 2 × 2 system of nonlinear algebraic equations. This fact makes it possible to predictthe phenomenon of double retrograde vaporization by numerical inversion of functions from a subset of the plane to the plane. This method canobtain all the solutions of the problem in a robust and efficient way, besides offering a basis for conducting a qualitative analysis of the function behavior. *Copyright © 2016 Praise Worthy Prize - All rights reserved.*

#### Keywords

#### Full Text:

PDF#### References

R. J. J. Chen, P. S. Chappelear, R. Kobayashi, Dew point loci for methane-n-butane binary system, Journal of Chemical and Engineering Data, Vol. 19, pp. 53-58, 1974.

http://dx.doi.org/10.1021/je60060a009

R. J. J. Chen, P. S. Chappelear, R. Kobayashi, Dew point loci for methane-n-pentane binary system, Journal of Chemical and Engineering Data, Vol. 19, pp. 58-61, 1974.

http://dx.doi.org/10.1021/je60060a010

S. Raeissi,On the phenomenon of double retrograde vaporization: within a study on supercritical deterpenation of orange oils with ethane. Ph.D. dissertation, TU Delft, Delft University of Technology, Holland, 2004.

S. Raeissi , C. J. Peters, On the phenomena of double retrograde vaporization: multi dew point behavior in the binary system ethane + limonene, Fluid Phase Equilibria, Vol. 191, pp. 33-40, 2001.

http://dx.doi.org/10.1016/s0378-3812(01)00605-7

D. Peng, D. Robinson, A new two-constant equation of state, Industrial & Engineering Chemistry Fundamentals, Vol. 15, n. 1, p. 59-64, 1976.

http://dx.doi.org/10.1021/i160057a011

S. Raeissi, C. J. Peters, Simulation of double retrograde vaporization using the Peng-Robinson equation of state, Journal of Chemical Thermodynamics, Vol. 35, pp. 573-581, 2003.

http://dx.doi.org/10.1016/s0021-9614(02)00235-5

I. P. Malta, N. C. Saldanha, C. Tomei, The numerical inversion of functions from the plane to the plane,Mathematics of Computation, Vol. 65, n. 216, p. 1531-1552, 1996.

http://dx.doi.org/10.1090/s0025-5718-96-00770-3

A. L. Guedes, F. D. MouraNeto, G. M. Platt, Prediction of azeotropicbehaviour by the inversion of functions from the plane to the plane,The Canadian Journal of Chemical Engineering, Vol. 93, pp. 914-928, 2015.

http://dx.doi.org/10.1002/cjce.22152

G. M. Platt, I. N. Bastos, R. P. Domingos, Calculation of double retrograde vaporization: Newton’s methods and hyperheuristic approach, Journal of NonlinearSystems and Applications, Vol. 3, n. 2, pp. 107-120, 2012.

Platt, G., Computational Experiments with Flower Pollination Algorithm in the Calculation of Double Retrograde Dew Points, (2014) International Review of Chemical Engineering (IRECHE), 6 (2), pp. 95-99.

X.-S. Yang, Flower Pollination algorithm for global optimization, Lecture Notes in Computer Science, Vol. 7445, pp. 240-249, 2012.

http://dx.doi.org/10.1007/978-3-642-32894-7_27

J. M. Smith, H. C. Van Ness, M. M. Abbott, Introduction to Chemical Engineering Thermodynamics (7th edition, McGraw-Hill International Edition, 2005).

I. P. Malta, N. C. Saldanha, C. Tomei,Geometria e análise numérica de funções do plano no plano. Proc. 19º Brazilian Colloquium of Mathematics, Rio de Janeiro, 1993 (in Portuguese).

E. T. Silva, wx2x2 – um software para sistemas não-lineares, M.Sc. Dissertation (in Portuguese), Dept. Mathematics, PontifíciaUniversidadeCatólica, Rio de Janeiro, Brazil, 2007.

http://dx.doi.org/10.17771/pucrio.acad.10089

G. B. Libotte, Método de inversão de funções do plano no plano aplicado ao problema de vaporização retrógrada dupla, M.Sc. Dissertation (in Portuguese), Computational Modeling Dept., Rio de Janeiro State University, Nova Friburgo, Brazil, 2016.

Allgower, E. L., Georg, K. Introduction to numerical continuation methods. (1st edition, SIAM, 2003).

http://dx.doi.org/10.1137/1.9780898719154

G. B. Libotte, G. M. Platt, Estudo da relação de convergência nas bacias de atração com a curva crítica do problema de vaporização retrógrada dupla, Proc. XVIII Brazilian Meeting on Computational Modelling (in Portuguese), Salvador-Brazil, 2015.

G. B. Libotte, G. M. Platt, Experimentação numérica no fenômeno de vaporização retrógrada dupla: um estudo sobre a curva crítica do sistema não-linear, Proc. CIBIM XII – Congreso Iberoamericano de Inginiería Mecánica (in Portuguese), Guayaquil – Ecuador, 2015.

H.-W. Lorenz, Nonlinear dynamical economics and chaotic motion (1st edition, Springer, 1993).

http://dx.doi.org/10.1007/978-3-642-78324-1

C.Grebogi, E. Ott, J. A. Yorke, Fractal basin boundaries, long-live chaotic transients and unstable-unstable pair bifurcation, Physical Review Letters, Vol. 50, n. 13, 1983.

http://dx.doi.org/10.1103/physrevlett.50.935

B. I. Epureanu, H. S. Greenside, Fractal basins of attraction with a damped Newton’s method, SIAM Review, Vol. 40, n. 1, pp. 102-109, 1998.

http://dx.doi.org/10.1137/s0036144596310033

P. Deuflhard, Newton methods for nonlinear problems: affine invariance and adaptive algorithms (1st edition, Springer, 2011).

### Refbacks

- There are currently no refbacks.

Please send any question about this web site to info@praiseworthyprize.com**Copyright © 2005-2024**** Praise Worthy Prize**