Heat Transfer Improvement in Micro-Channel Heat Sinks by Modifying Some Design and Operating Conditions
(*) Corresponding author
DOI: https://doi.org/10.15866/ireme.v10i6.9492
Abstract
For effective thermal management of high heat generating microprocessors, the effects of volumetric flow rates, flow direction and four design parameters are numerically explored, which are: the channel number, the bottom channel height, the vertical rib width and the thicknesses of two horizontal ribs. The microprocessor heat was simulated by a heated copper block with water as a coolant. At a heater power of 325 W, the lowest Tbase (40.5 °C) is obtained by using a heat sink with fin spacing equal to 0.2 mm, and which is found to be lower by about 9% than that obtained with the commercial heat sink (44 °C) in the open literature. For a simple geometry and by using a volumetric flow rate of 2 L/min, the lowest Tbase obtained is 37.35 °C. However, with a single row of round shaped channels and with just a volumetric flow rate of 1 L/min, the lowest Tbase obtained is 37.06 °C, i.e. an improvement by about 2.2%. Another reduction of the Tbase is obtained when using two rounds shaped channels; the new Tbase is 36.25 °C, i.e. an improvement by about 5.8 %. The review of the obtained results allows saying that Tbase temperature was reduced from 44°C to 36.25°C, after earlier mentioned changes on the heat sink, with a percentage of total heat exchange improvement of about 17, 7%.
Copyright © 2016 Praise Worthy Prize - All rights reserved.
Keywords
Full Text:
PDFReferences
A. Capozzoli, G. Primiceri, Cooling systems in data centers: state of art and emerging technologies, Energy Procedia 83 (2015) 484–493.
http://dx.doi.org/10.1016/j.egypro.2015.12.168
H. Safikhani, H. Dolatabadi, Multi-objective optimization of cooling of a stack of vertical minichannels and conventional channels subjected to natural convection, Appl. Therm. Eng. 96 (2016) 144–150.
http://dx.doi.org/10.1016/j.applthermaleng.2015.11.094
K. Nishino, M. Samada, K. Kasuya, K. Torii, Turbulence statistics in the stagnation region of an axisymmetric impingement jet flow, Int. J. Heat Fluid Flow 17 (1996) 193–201.
http://dx.doi.org/10.1016/0142-727x(96)00040-9
M. Beriache, A. Bettahar, H. Naji, L. Loukarfi, L. M. Saïdia, Fluid flow and thermal characteristics of a minichannel heat sink with impinging air flow. Arab. J. Sci. Eng. 37 (2012) 2243–2254.
http://dx.doi.org/10.1007/s13369-012-0321-3
M. E. Steinke, S. G. Kandlikar, Single phase heat transfer enhancement technique in micro-channel and mini-channel flows, in: Int. Conf. of Micro-channel and Mini-channels, New York, ASME (2004) 141–148, ICMM 2004-2328.
A.E. Bergles, ExHFT for fourth generation heat transfer technology, Exp. Therm. Fluid Sci. 26 (2002) 335–344.
http://dx.doi.org/10.1016/s0894-1777(02)00145-0
Bi, G.H. Tang, W.Q. Tao, Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves, Appl. Therm. Eng. 55 (2013) 121–132.
http://dx.doi.org/10.1016/j.applthermaleng.2013.03.007
S.S. Anandan, V. Ramalingam,Thermal management of electronics: A review of literature, Therm. Science 12 (2008) 5–26.
http://dx.doi.org/10.2298/tsci0802005a
J.F. Tullius, R. Vajta, Y. Bayazitoglu, A Review of cooling in micro-channels, Heat Trans. Eng. 32 (2011) 527–541.
http://dx.doi.org/10.1080/01457632.2010.506390
R. Schmidt, Challenges in electronic cooling—opportunities for enhanced thermal management techniques—microprocessor liquid cooled minichannel heat sink, Heat Transfer Eng. 25 (2004) 3–12.
http://dx.doi.org/10.1080/01457630490279986
D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI. Electron Device Letters, 1981, 126 – 129.
http://dx.doi.org/10.1109/edl.1981.25367
A. Barba, B. Musi, M.Spiga, Performance of a polymeric heat sink with circular micro-channels, Appl. Therm. Eng. 26 (2006) 787–794.
http://dx.doi.org/10.1016/j.applthermaleng.2005.10.015
G.I. Mahmood, M.L. Hill, D.L. Nelson, P.M. Ligrani, H.K. Moon, B. Glezer, Local heat transfer and flow structure on and above a dimpled surface in a channel, ASME J. Turbomach. 123 (2001) 115–123.
http://dx.doi.org/10.1115/1.1333694
G.I. Mahmood, P.M. Ligrani, Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number and flow structure, Int. J. Heat Mass Transfer 45 (2002) 2011–2020.
http://dx.doi.org/10.1016/s0017-9310(01)00314-3
P.M. Ligrani, J.L. Harrison, G.I. Mahmood, M.L. Hill, Flow structure due to dimple depression on a channel surface, Phys. Fluids 13 (2001) 3442–3451.
http://dx.doi.org/10.1063/1.1404139
N.K. Burgess, P.M. Ligrani, Effects of dimple depth on channel Nusselt numbers and friction factors, ASME J. Heat Transfer 127 (2005) 839–847.
http://dx.doi.org/10.1115/1.1994880
Y.O. Lee, J. Ahn, J.S. Lee, Large eddy simulation of flow and heat transfer in a cylindrically grooved channel, Proc. Asian Symp.Comput. Heat Transfer Fluid Flow 1 (2009) 188–191. Jeju, Korea.
X.L. Xie, W.Q. Tao, Y.L. He, Numerical study of turbulent heat transfer and pressure drop characteristics in a water cooled minichannel heat sink, J. Electron. Package 129 (2007) 247–255.
http://dx.doi.org/10.1115/1.2753887
S. A. Jajja, W. Ali, H. M. Ali, A. M. Ali, Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing. Appl. Therm. Eng. 64 (2014) 76–82.
http://dx.doi.org/10.1016/j.applthermaleng.2013.12.007
B.P. Whelan, R. Kempers, A.J. Robinson, A liquid-based system for CPU cooling Implementing a jet array impingement water block and a tube array remote heat exchanger, Appl. Therm. Eng. 39 (2012) 86–94.
http://dx.doi.org/10.1016/j.applthermaleng.2012.01.013
P. Naphon, S. Wongwises, Investigation on the jet liquid impingement heat transfer for the central processing unit of personal computers, Int. J. Heat Mass Transfer 37 (2010) 822–826.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.05.004
M.R.O. Panão, J.P.P.V. Guerreiro, A.L.N. Moreieira, Microprocessor cooling based on an intermittent multijet spray system, Int. J. Heat Mass Transfer 55 (2012) 2854–2863.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.02.036
C.J. Ho, W.C. Chen, An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink, Appl. Therm. Eng. 50 (2013) 516–522.
http://dx.doi.org/10.1016/j.applthermaleng.2012.07.037
M. I. Hasan, Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nanofluid, Appl. Therm. Eng. 63 (2014) 598–607.
http://dx.doi.org/10.1016/j.applthermaleng.2013.11.059
P. Naphon, L. Nakharintr, Numerical investigation of laminar heat transfer of nanofluid-cooled mini-rectangular fin heat sinks, J. Eng. Phys. Therm. 88 (2015) 666–675.
http://dx.doi.org/10.1007/s10891-015-1235-1
M. R. Salimpour, A. Dehshiri-Parizi, Convective heat transfer of nanofluid flow through conduits with different cross-sectional shapes, J. Mech. Sci. Tech. 29 (2015) 707–713.
http://dx.doi.org/10.1007/s12206-015-0130-1
M. E. Steinke, S. G. Kandlikar, Single-Phase Liquid Friction Factors in Micro-channels, Int. J. Therm. Sci. 45 (2006) 1073–1083.
http://dx.doi.org/10.1016/j.ijthermalsci.2006.01.016
P. S. Lee, S. V. Garimella, Thermally Developing Flow and Heat Transfer in Rectangular Micro-channels of Different Aspect Ratios, Int. J. Heat Mass Trans. 49 (2006) 3060–3067.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.02.011
H.R. Upadhye, S.G. Kandlikar, Optimization of micro-channel geometry for direct chip cooling using single phase heat transfer, Proceed. Micro-channels Minichannels, Paper No. ICMM2004-2398 (2004) 679–685.
http://dx.doi.org/10.1115/icmm2004-2398
C. Nonino, S. Savino, S. Del Giudice, Temperature-dependent viscosity and viscous dissipation effects in micro-channel flows with uniform wall heat flux, Heat Transfer Eng. 31 (2010) 682–691.
http://dx.doi.org/10.1080/01457630903466670
X.L. Xie, Z.J. Liu, Y.L. He, W.Q. Tao, Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, Appl. Therm. Eng. 29 (2009) 64–74.
http://dx.doi.org/10.1016/j.applthermaleng.2008.02.002
M. Khoshvaght-Aliabadi, M. Sahamiyan, M. Hesampour, O. Sartipzadeh, Experimental study on cooling performance of sinusoidal–wavy minichannel heat sink, Appl. Therm. Eng. 92 (2016) 50–61.
http://dx.doi.org/10.1016/j.applthermaleng.2015.09.015
G. Xie, F. Zhang, B. Sundén, W. Zhang, Constructal design and thermal analysis of micro-channel heat sinks with multistage bifurcations in single-phase liquid flow, Appl. Therm. Eng. 62 (2014) 791–802.
http://dx.doi.org/10.1016/j.applthermaleng.2013.10.042
M. Marzougui, M. Hammami, R. Ben Maad, Experimental study on thermal performance of heat sinks: the effect of hydraulic diameter and geometric shape, Heat Mass Transfer 52 (2016) 2091-2100.
http://dx.doi.org/10.1007/s00231-015-1725-x
X. Liu, J. Yu, Numerical study on performances of mini-channel heat sinks with non-uniform inlets, Appl. Therm. Eng. 93 (2016) 856–864.
http://dx.doi.org/10.1016/j.applthermaleng.2015.09.032
P. Li, D. Zhang, Y. Xie, G. Xie, Flow structure and heat transfer of non-Newtonian fluids in micro-channel heat sinks with dimples and protrusions, Appl. Therm. Eng. 94 (2016) 50–58.
http://dx.doi.org/10.1016/j.applthermaleng.2015.10.119
S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, NY, (1980).
http://dx.doi.org/10.1002/cite.330530323
W. Q. Tao, Numerical Heat Transfer, second ed., Xi’an Jiaotong, (2001).
S. J. Kim, D. Kim, Forced convection in microstructures for electronic equipment cooling, J. Heat Transfer 121 (1999) 639–645.
http://dx.doi.org/10.1115/1.2826027
M. Piasecka, An application of enhanced heating surface with mini-reentrant cavities for flow boiling research in minichannels, Heat Mass Transfer 49 (2013) 261–275.
http://dx.doi.org/10.1007/s00231-012-1082-y
A. Dewan, P. Srivastava, A review of heat transfer enhancement through flow disruption in a micro-channel, J. Therm. Sci. 24 (2015) 203–214
http://dx.doi.org/10.1007/s11630-015-0775-1
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize