Open Access Open Access  Restricted Access Subscription or Fee Access

Approach to Assistive Robotics Based on an EEG Sensor and a 6-DoF Robotic Arm

(*) Corresponding author

Authors' affiliations



This work presents an approach to Assistive Robotics based in a Brain Computer Interface (BCI) on the Steady State Visual Evoked Potentials (SSVEP), using a 6-DOF Robotic Arm, an Emotiv EPOC sensor and a Kinect camera.
The proposed architecture has the objective of integrating different systems, with the aim of creating a robotic assistant for the disabled or movement restricted user, improving the life quality of those people. The robot assistance assignment is related with actions like pick and place, or feed and hold food for the user, etc.
The proposed methods are based in image and signal processing, BCI decision making, localization of a target point, trajectory planning for the robot arm, and execution of the assistive task. The most remarkable results validate the proposed approach as a good integration method of different technologies for assistive robotics tasks.
Copyright © 2016 Praise Worthy Prize - All rights reserved.


Assistive Robotics; EEG; Brain Computer Interface (BCI); SSVEP; Mechatronics

Full Text:



Centers for Disease Control and Prevention (CDC), Ten great public health achievements--worldwide, 2001-2010., vol. 60, no. 24. American Medical Association, 2011.

H. Lancaster, Mortality and the Evolution of Society, Expect. Life, pp. 1–11, 1990.

R. Ortner, B. Z. Allison, G. Korisek, H. Gaggl, and G. Pfurtscheller, An SSVEP BCI to control a hand orthosis for persons with tetraplegia, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 1, pp. 1–5, Feb. 2011.

G. Pfurtscheller, T. Solis-Escalante, R. Ortner, P. Linortner, and G. R. Muller-Putz, Self-paced operation of an SSVEP-based orthosis with and without an imagery-based ‘brain switch’: A feasibility study towards a hybrid BCI, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 4, pp. 409–414, 2010.

L. Montesano, M. Díaz, S. Bhaskar, and J. Minguez, Towards an intelligent wheelchair system for users with cerebral palsy., IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 2, pp. 193–202, Apr. 2010.

Z. Bahri, S. Abdulaal, and M. Buallay, Sub-band-power-based efficient Brain Computer Interface for wheelchair control, in 2014 World Symposium on Computer Applications and Research, WSCAR 2014, 2014, vol. 4, no. 1, pp. 34–40.

R. Leeb, D. Friedman, G. R. Müller-Putz, R. Scherer, M. Slater, and G. Pfurtscheller, Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: A case study with a tetraplegic, Comput. Intell. Neurosci., vol. 2007, 2007.

B. Rebsamen, E. Burdet, C. Guan, H. Zhang, C. L. Teo, Q. Zeng, C. Laugier, and M. H. Ang Jr., Controlling a Wheelchair Indoors Using Thought, IEEE Intell. Syst., vol. 22, no. 2, pp. 18–24, Mar. 2007.

E. J. Rechy-Ramirez, H. Hu, and K. McDonald-Maier, Head movements based control of an intelligent wheelchair in an indoor environment, 2012 IEEE Int. Conf. Robot. Biomimetics, pp. 1464–1469, 2012.

S. M. T. Müller, T. F. Bastos, and M. S. Filho, Proposal of a SSVEP-BCI to command a robotic wheelchair, J. Control. Autom. Electr. Syst., vol. 24, no. 1–2, pp. 97–105, Jun. 2013.

M. Palankar, K. J. De Laurentis, R. Alqasemi, E. Veras, R. Dubey, Y. Arbel, and E. Donchin, Control of a 9-DoF wheelchair-mounted robotic arm system using a P300 brain computer interface: Initial experiments, in 2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008, 2008, pp. 348–353.

S. Fok, R. Schwartz, M. Wronkiewicz, C. Holmes, J. Zhang, T. Somers, D. Bundy, and E. Leuthardt, An EEG-based brain computer interface for rehabilitation and restoration of hand control following stroke using ipsilateral cortical physiology, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 6277–6280, 2011.

J. Webb, Z. G. Xiao, K. P. Aschenbrenner, G. Herrnstadt, and C. Menon, Towards a portable assistive arm exoskeleton for stroke patient rehabilitation controlled through a brain computer interface, Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics, pp. 1299–1304, 2012.

T. Lüth, D. Ojdanić, O. Friman, O. Prenzel, and A. Gräser, Low level control in a semi-autonomous rehabilitation robotic system via a brain-computer interface, in 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, 2007, pp. 721–728.

A. Vourvopoulos and F. Liarokapis, Brain-controlled NXT Robot: Tele-operating a robot through brain electrical activity, Proc. - 2011 3rd Int. Conf. Games Virtual Worlds Serious Appl. VS-Games 2011, pp. 140–143, 2011.

A. Güneysu and H. L. Akin, An SSVEP based BCI to control a humanoid robot by using portable EEG device, Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2013, pp. 6905–6908, Jul. 2013.

C. Escolano, J. M. Antelis, and J. Minguez, A telepresence mobile robot controlled with a noninvasive brain-computer interface., IEEE Trans. Syst. Man. Cybern. B. Cybern., vol. 42, no. 3, pp. 793–804, Jun. 2012.

P. Kumari and A. Vaish, Brainwave based user identification system: A pilot study in robotics environment, Rob. Auton. Syst., vol. 65, pp. 15–23, 2015.

A. C. Villa-Parra, D. Delisle-Rodríguez, A. López-Delis, T. Bastos-Filho, R. Sagaró, and A. Frizera-Neto, Towards a robotic knee exoskeleton control based on human motion intention through EEG and sEMGsignals, Teodiano Bastos-Filho/ Procedia Manuf., 2015.

C. A. Cáceres Flórez, O. L. Ramos Sandoval, and D. Amaya Hurtado, Procesamiento de imágenes para reconocimiento de daños causados por plagas en el cultivo de Begonia semperflorens (flor de azúcar), Acta Agronómica, vol. 64, no. 3, pp. 273–279, 2015.

G. Louverdis, M. I. Vardavoulia, I. Andreadis, and P. Tsalides, A new approach to morphological color image processing, Pattern Recognit., vol. 35, no. 8, pp. 1733–1741, 2002.

J. Smisek, M. Jancosek, T. Pajdla, 3D with Kinect,Consumer Depth Cameras for Computer Vision, pp. 3–25, 2011.

J. Figueroa and L. Contreras, Development of an Object Recognition and Location System Using the Microsoft Kinect TM Sensor, Rob. 2011 Robot …, pp. 440–449, 2012.

A. Vilic, T. W. Kjaer, C. E. Thomsen, S. Puthusserypady, and H. B. D. Sorensen, DTU BCI speller: An SSVEP-based spelling system with dictionary support, in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2013, pp. 2212–2215.

F. T. Hvaring and A. H. Ulltveit-moe, A Comparison of Visual Evoked Potential ( VEP ) -Based Methods for the Low-Cost Emotiv EPOC Neuroheadset, Norwegian University of Science and Technology, 2014.

R. J. M. Godinez Tello, S. M. T. Müller, A. Ferreira, and T. F. Bastos, Comparison of the influence of stimuli color on steady-state visual evoked potentials, Rev. Bras. Eng. Biomed., vol. 31, no. 3, pp. 218–231, Sep. 2015.

T. Cao, F. Wan, P. U. Mak, P. I. Mak, M. I. Vai, and Y. Hu, Flashing color on the performance of SSVEP-based brain-computer interfaces, in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2012, pp. 1819–1822.

M. Aljshamee, M. Q. Mohammed, R.-U.-A. Choudhury, A. Malekpour, and P. Luksch, Beyond Pure Frequency and Phases Exploiting: Color Influence in SSVEP Based on BCI, Comput. Technol. Appl., vol. 5, pp. 111–118, 2014.

P. Corke, Robotics, vision and control: fundamental algorithms in MATLAB. Springer Science & Business Media, 2011.

R. N. Jazar, Inverse Kinematics, Theory Appl. Robot., pp. 263–296, 2007.

Y. Guan, K. Yokoi, O. Stasse, and A. Kheddar, On robotic trajectory planning using polynomial interpolations, 2005 IEEE Int. Conf. Robot. Biomimetics - ROBIO, pp. 111–116, 2005.

J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller, EEG-based communication: Improved accuracy by response verification, IEEE Trans. Rehabil. Eng., vol. 6, no. 3, pp. 326–333, Sep. 1998.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize