Open Access Open Access  Restricted Access Subscription or Fee Access

Analytical Energetic Approach for Predictive Generation of Dynamic Biped Walking - Use of Average Energies


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v10i7.8863

Abstract


This paper presents a control strategy for biped robot walking based on energetic approach. Our aim is to be able, in real time, to predict the length of the next step that the biped should execute to ensure its desired speed. According to known (measured) state in the previous step the proposed algorithm will establish the desired global parameters (i.e. the biped average velocity). The new approach presented in this paper benefits from a formulation of energy exchanges using the average values of all energies contributing during dynamic bipedal walking. We develop a model that takes into account kinetic and propulsion (provided by the rear leg) energies as well as the energy lost during the impact of the front leg. We introduce a recursive formulation in order to predict the energy behavior of the biped robot during its walk. Analytical and concise expression suitable for real-time application was developed. We show that the same formulation is convenient for both flat terrain and crossing over obstacles in the sagittal plane. Hence, we are able, in both cases, to determine the next step length required to ensure the desired average velocity. We validate the proposed approach through an ADAMS simulation of a planar robot in the sagittal plane. The obtained results show the efficiency of this promising approach.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Humanoid; Dynamic Walking; High-Level Control; Average Energies; Predictive Control

Full Text:

PDF


References


G. Cavagna, P. Willems, M. Legramandi, N. Heglund, Pendular energy transduction within the step in human walking, J. Experimental Biology 205 (2002) 3413-3422.
http://dx.doi.org/10.1111/j.1469-7793.2000.00657.x

A. Kuo, Energetics of actively powered locomotion using the simplest walking model, J. Biomechanical Engineering 124 (2002) 113-120.
http://dx.doi.org/10.1115/1.1427703

Yusuf, L., Magaji, N., Comparison of Fuzzy Logic and GA-PID Controller for Position Control of Inverted Pendulum, (2014) International Review of Automatic Control (IREACO), 7 (4), pp. 380-385.

Puangdownreong, D., Optimal State-Feedback Design for Inverted Pendulum System by Flower Pollination Algorithm, (2016) International Review of Automatic Control (IREACO), 9 (5), pp. 289-297.
http://dx.doi.org/10.15866/ireaco.v9i5.10142

Gaya, M., Bisu, A., Salim, S., Madugu, I., Yusuf, L., Kaurangini, M., Khairi, M., Optimal PID Design Approaches for an Inverted Pendulum System, (2016) International Review of Automatic Control (IREACO), 9 (3), pp. 167-174.
http://dx.doi.org/10.15866/ireaco.v9i3.9160

Punlabpho, S., Jearsiripongkul, T., Control System for Double Inverted Pendulum on a Cart by H-Infinity Controller, (2015) International Review of Automatic Control (IREACO), 8 (4), pp. 300-306.
http://dx.doi.org/10.15866/ireaco.v8i4.6968

Kharroubi, L., Nouibat, W., Ouslim, M., Modeling and Stabilization Fuzzy Control Strategies of a Nonlinear Cart-Pendulum System: a Comparative Study, (2015) International Review of Automatic Control (IREACO), 8 (6), pp. 396-406.
http://dx.doi.org/10.15866/ireaco.v8i6.7656

Mardlijah, -., Jazidie, A., Widodo, B., Santoso, A., Design of T2FSMC Controller with Minimum Gain Scale Factor by Optimizing Membership Function Using FireFly Algorithm on Mobile Inverted Pendulum, (2013) International Review of Automatic Control (IREACO), 6 (4), pp. 431-440.

Abdellah, A., Abdelhafid, A., Mostafa, R., Combining Sliding Mode and Linear Quadratic Regulator to Control the Inverted Pendulum, (2013) International Review of Automatic Control (IREACO), 6 (1), pp. 69-76.

Rahimi, M., Ghasemi, R., Sanaei, D., Designing Discrete Time Optimal Controller for Double Inverted Pendulum System, (2013) International Journal on Numerical and Analytical Methods in Engineering (IRENA), 1 (1), pp. 1-5.

S. Collins, M. Wisse, A. Ruina, A three-dimensionnal passive-dynamic walking robot with two legs and knees, The International Journal of Robotics Research 20, No 7 (2001) 607-615.
http://dx.doi.org/10.1177/02783640122067561

J.Pratt, C.-M. Chew, A. Torres, P. Dilworth, G. Pratt, Virtual model control: An intuitive approach for bipedal locomotion, International Journal of Robotics Research 2 (2000) 129-143.
http://dx.doi.org/10.1177/02783640122067309

V. Sangwan, A. Taneja, S. Mukherjee, Design of a robust self-excited biped walking mechanism, Mechanism and Machine Theory 39 (12) (2004) 1385 - 1397, 11th National Conference on Machines and Mechanisms (NaCoMM-2003).
http://dx.doi.org/10.1016/j.mechmachtheory.2004.05.023

Sabourin, O. Bruneau, G. Buche, Control strategy for the robust dynamic walk of a biped robot, I. Robotic Res. 25 (9) (2006) 843-860.
http://dx.doi.org/10.1177/0278364906069151

Collins, S. H., M. Wisse, A. Ruina, A three-dimentional passive-dynamic walking robot with two legs and knees, International Journal of Robotics Research 20 (2001) 607-615.
http://dx.doi.org/10.1177/02783640122067561

D. G. E. Hobbelen, M. W. and, Controlling the walking speed in limit cycle walking, I. J. Robotic Res. 27 (9) (2008) 989-1005.
http://dx.doi.org/10.1177/0278364908095005

A. T. Safa, M. G. Saadat, M. Naraghi, Passive dynamic of the simplest walking model: Replacing ramps with stairs, Mechanism and Machine Theory 42 (10) (2007) 1314 - 1325.
http://dx.doi.org/10.1016/j.mechmachtheory.2006.11.001

J.-S. Moon, M. W. Spong, Classi_cation of periodic and chaotic passive limit cycles for a compass-gait biped with gait asymmetries, Robotica 29 (07) (2011) 967-974.
http://dx.doi.org/10.1017/s0263574711000178

E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, B. Morris, Feedback control of dynamic bipedal robot locomotion, New York: CRC Press.
http://dx.doi.org/10.1201/9781420053739

S. Kajita, T. Yamaura, A. K. and, Dynamic walking control of a biped robot along a potential conserving orbit, IEEE Trans. Robot. Automat 8 (1992) 431-438.
http://dx.doi.org/10.1109/70.149940

M. Alba, J. C. G. Prada, J. Meneses, H. Rubio, Center of percussion and gait design of biped robots, Mechanism and Machine Theory 45 (11) (2010) 1681 - 1693.
http://dx.doi.org/10.1016/j.mechmachtheory.2010.06.008

S. Kajita, O. Matsumoto, M. Saigo, Real-time 3-d walking pattern generation for a biped robot with telescopic legs, in Proc. IEEE Int. Conf. Robotics and Automation (2001) 2299-2306.
http://dx.doi.org/10.1109/robot.2001.932965

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2 (2003) 1644-1650.
http://dx.doi.org/10.1109/iros.2003.1248880

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K.Yokoi, H. Hirukawa, A realtime pattern generator for biped walking, International Conference on Robotics & Automation.
http://dx.doi.org/10.1109/robot.2002.1013335

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, International Conference on Robotics & Automation (2003) 1620-1626.
http://dx.doi.org/10.1109/robot.2003.1241826

Kassim, A., Yasuno, T., Abas, N., Aras, M., Rashid, M., Performance Study of Reference Height Control Algorithm for Tripod Hopping Robot, (2013) International Review of Mechanical Engineering (IREME), 7 (5), pp. 784-789.

S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, H. Hirukawa, The 3d linear inverted pendulum mode: A simple modeling for a biped walking pattern generator, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2001) 239-246.
http://dx.doi.org/10.1109/iros.2001.973365

S. Kajita, T. Nagasaki, K. Kaneko, H. Hirukawa, Zmp-based biped running control, Robotics and Automation Magazine 14 (2) (2007) 63-72.
http://dx.doi.org/10.1109/mra.2007.380655

T. Sugihara, Y. Nakamura, Variable impedant inverted pendulum model control for a seamless contact phase transition on humanoid robot, IEEE International Conference on Humanoid Robots (Humanoids 2003).
http://dx.doi.org/10.1109/robot.2003.1241572

T. Koolen, T. de Boer, J. Rebula, A. Goswami, J. Pratt, Capturability-based analysis and control of legged locomotion, part 1: Theory and application to three simple gait models, The International Journal of Robotics Research 31 (2012) 1094-1113.
http://dx.doi.org/10.1177/0278364912452673

M. Wisse, D. Hobbelen, A. Schwab, Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism, Transactions on Robotics 23 (1) (2007) 112-123.
http://dx.doi.org/10.1109/tro.2006.886843

Kassim, A., Yasuno, T., Sivarao, S., Jaafar, H., Jafar, F., Brake Motion Control for Quadruped Hopping Robot by Using Reference Height Control System, (2013) International Review of Mechanical Engineering (IREME), 7 (6), pp. 1164-1170.

K. Harada et al., "Kinodynamic gait planning for full-body humanoid robots," 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, 2008, pp. 1544-1550.
http://dx.doi.org/10.1109/iros.2008.4650862

J.Pratt, Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots, Ph.D. Thesis, Computer Science Department, Massachusetts Institute of Technology.
http://dx.doi.org/10.1002/9780470611623.ch1

J. M. Font-Llagunes, J. Kvecses, Dynamics and energetics of a class of bipedal walking systems, Mechanism and Machine Theory 44 (11) (2009) 1999 - 2019.
http://dx.doi.org/10.1016/j.mechmachtheory.2009.05.003

D. Kar, K. K. Issac, K. Jayarajan, Gaits and energetics in terrestrial legged locomotion, Mechanism and Machine Theory 38 (4) (2003) 355 - 366, naCOMM99, the National Conference on Machines and Mechanisms.
http://dx.doi.org/10.1016/s0094-114x(02)00124-6

J. Pratt, R. Tedrake, Velocity based stability margins for fast bipedal walking, First Ruperto Carola Symposium in the International Science Forum of the University of Heidelberg entitled "Fast Motions in Biomechanics and Robots Heidelberg Germany: Springer Berlin / Heidelberg.
http://dx.doi.org/10.1007/978-3-540-36119-0_14

S. Alfayad, F. B. Ouezdou, F. Namoun, New 3dof hybrid mechanism for ankle, wrist of humanoid robot : Modeling, simulation, control and experiments, Journal of Mechanical Design ASME 133 (2011) 005-021.
http://dx.doi.org/10.1115/1.4003250

S. Alfayad, F. B. Ouezdou, F. Namoun, G. Cheng, New highly integrated electro-hydraulic actuator for robotics - part ii : Theoretical modelling, simulation, control and comparison with real measurements, Sensors and Actuators A : Physical 169 (2011) 124-132.
http://dx.doi.org/10.1016/j.sna.2011.03.019

S. Alfayad, F. B. Ouezdou, F. Namoun, G. Cheng, New highly integrated electro-hydraulic actuator for robotics - part i : Principle, prototype design and _rst experiments, Sensors and Actuators A : Physical 169 (2011) 115-123.
http://dx.doi.org/10.1016/j.sna.2010.10.026


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize