Open Access Open Access  Restricted Access Subscription or Fee Access

Comments on Energy Harvesting on a 2:1 Internal Resonance Portal Frame Support Structure, Using a Nonlinear-Energy Sink as a Passive Controller

Rodrigo Tumolin Rocha(1*), Jose Manoel Balthazar(2), Angelo Marcelo Tusset(3), Vinicius Piccirillo(4), Jorge Luis Palacios Felix(5)

(1) Department of Mechanical Engineering, Sao Paulo State University, Brazil
(2) Sao Paulo State University and Aeronautics Technological Institute, Department of Mechanical Engineering and Mechanical Engineering Division, Brazil
(3) Department of Eletronics, Federal Technological University of Parana, Brazil
(4) Department of Mathematics, Federak Technological University of Parana, Brazil
(5) Federal University of Fronteira Sul, Brazil
(*) Corresponding author


DOI: https://doi.org/10.15866/ireme.v10i3.8795

Abstract


This paper presents an application of a passive control strategy in a base-excited two-degrees-of-freedom portal frame support structure considering extract energy using a piezoelectric material coupled to a column. The 2:1 (two-to-one) internal resonance is set between the vertical and horizontal coordinates, resulting in a phenomenon known as saturation. This phenomenon transfers partial vibratory mechanical energy from vertical to horizontal mode, making possible to extract energy from the columns. The idea is to tune the vibration of the structure, in order to improve the energy harvesting, and this is performed through a passive controller that is a nonlinear-energy sink device, i.e., the proposed device is a mass-spring-damper that plays a role of tuning the vertical and horizontal displacements, and, as consequence, improving the energy harvesting. The numerical results depicted the best configuration of the controller device, which aims to improve the energy harvesting, whose piezoelectric material is used as a means of low-power energy transduction.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Saturation Phenomenon; Passive Control; Energy Harvesting; Nonlinear-Energy Sink

Full Text:

PDF


References


D. T. Mook, R. H. Plaut, N. HaQuang. The influence of an internal resonance on non-linear structural vibrations under subharmonic resonance conditions. Journal of Sound and Vibration, 102(4), 473-492, 1985.
http://dx.doi.org/10.1016/s0022-460x(85)80108-5

A. H. Nayfeh, D. T. Mook. Nonlinear oscillations (John Wiley & Sons, 2008).
http://dx.doi.org/10.1177/058310248101300507

A. H. Nayfeh. Nonlinear interactions (Wiley, New York, 2000).

P. F. Pai, B. Wen, A. S. Naser, M. J. Schulz. Structural vibration control using PZT patches and non-linear phenomena. Journal of Sound and vibration, 215(2), 273-296, 1998.
http://dx.doi.org/10.1006/jsvi.1998.1612

A. M. Tusset, V. Piccirillo, A. M. Bueno, J. M. Balthazar, D. Sado, J. L. P. Felix, R. M. L. R. da Fonseca. Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. Journal of Vibration and Control, 1077546314564782, 2015.
http://dx.doi.org/10.1177/1077546314564782

J. L. P. Felix, J. M. Balthazar, R. M. Brasil. On saturation control of a non-ideal vibrating portal frame foundation type shear-building. Journal of Vibration and Control, 11(1), 121-136, 2005.
http://dx.doi.org/10.1177/1077546305047656

A. Erturk, D. J. Inman. Piezoelectric energy harvesting (John Wiley & Sons, 2011).
http://dx.doi.org/10.1002/9781119991151

A. Erturk, J. Hoffmann, D. J. Inman. A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 94(25), 254102, 2009.
http://dx.doi.org/10.1063/1.3159815

Xiao, H., Wang, X., A Review of Piezoelectric Vibration Energy Harvesting Techniques, (2014) International Review of Mechanical Engineering (IREME), 8 (3), pp. 609-620.

Wang, X., Xiao, H., Dimensionless Analysis and Optimization of Piezoelectric Vibration Energy Harvester, (2013) International Review of Mechanical Engineering (IREME), 7 (4), pp. 607-624.

G. Litak, M. I. Friswell, C. A. K. Kwuimy, S. Adhikari, M. Borowiec. Energy harvesting by two magnetopiezoelastic oscillators with mistuning. Theoretical and Applied Mechanics Letters, 2(4), 043009, 2012.
http://dx.doi.org/10.1063/2.1204309

N. G. Stephen. On energy harvesting from ambient vibration. Journal of Sound and Vibration, 293(1), 409-425, 2006.
http://dx.doi.org/10.1016/j.jsv.2005.10.003

S. Priya, D. J. Inman. Energy harvesting technologies (Vol. 21, New York: Springer, 2009).
http://dx.doi.org/10.1007/978-0-387-76464-1

E. F. Crawley, E. H. Anderson. Detailed models of piezoceramic actuation of beams. Journal of Intelligent Material Systems and Structures, 1(1), 4-25, 1990.
http://dx.doi.org/10.1177/1045389x9000100102

A. Triplett, D. D. Quinn. The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 20(16), 1959-1967, 2009.
http://dx.doi.org/10.1177/1045389x09343218

M. F. Daqaq, R. Masana, A. Erturk, D. D. Quinn. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Applied Mechanics Reviews, 66(4), 040801, 2014.
http://dx.doi.org/10.1115/1.4026278

I. Iliuk, J. M. Balthazar, A. M. Tusset, J. R. Piqueira, B. R. de Pontes, J. L. Felix, A. M. Bueno. Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system. Journal of Intelligent Material Systems and Structures, 1045389X13500570, 2013.
http://dx.doi.org/10.1177/1045389x13500570

A. F. Vakakis. Nonlinear targeted energy transfer in mechanical and structural systems (Vol. 156, Springer Science & Business Media, 2008).

O. V. Gendelman. Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear dynamics, 25(1-3), 237-253, 2001.
http://dx.doi.org/10.1007/978-94-017-2452-4_13

O. Gendelman, L. I. Manevitch, A. F. Vakakis, R. M’closkey. Energy pumping in nonlinear mechanical oscillators: Part I—Dynamics of the underlying Hamiltonian systems. Journal of Applied Mechanics, 68(1), 34-41, 2001.
http://dx.doi.org/10.1115/1.1345524

A. F. Vakakis, O. Gendelman. Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. Journal of Applied Mechanics, 68(1), 42-48, 2001.
http://dx.doi.org/10.1115/1.1345525

J. L. P. Felix, J. M. Balthazar, R. M. L. R. da Fonseca, A. S. de Paula. On an energy exchange process and appearance of chaos in a non-ideal portal frame dynamical system. Differential Equations and Dynamical Systems, 21(4), 373-385, 2013.
http://dx.doi.org/10.1007/s12591-013-0163-9

G. F. Alışverişçi, H. Bayıroğlu, J. L. P. Felix, J. M. Balthazar, R. M. L. R. F. Brasil. A nonlinear electromechanical pendulum arm with a nonlinear energy sink control (NES) approach. Journal of Theoretical and Applied Mechanics (Warsaw), 2016, in press.

J. M. Balthazar, R. T. Rocha, R. M. F. L. Brasil, A. M. Tusset, B. R. de Pontes, M. Silveira. Mode saturation, mode coupling and energy harvesting from ambient vibration in a portal frame structure. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Buffalo, New York, USA, (2014, August), pp. 1-10.
http://dx.doi.org/10.1115/detc2014-34268

R. T. Rocha, J. M. Balthazar, A. M. Tusset, V. Piccirillo, J. L. P. Felix, R. M. L. R. F. Brasil. On energy harvesting of a flexible portal frame support exploiting the saturation phenomenon. In: ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2015), 2015, Boston, Massachusetts, USA. pp. 1-10.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2020 Praise Worthy Prize