Open Access Open Access  Restricted Access Subscription or Fee Access

Effects of Air Entry of Swirling Flameless Combustion in a Low NOx Burner


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v10i2.7943

Abstract


Achieving considerable improvement in the ignition performance via flameless combustion is a big challenge. Obtaining uniform temperature field inside the combustor with ultra-low NOx and CO emission as well as enhanced combustion stability remains a challenge. In the present work, a flameless combustion technique is applied using a laboratory scale furnace under the swirling flameless combustion, using natural gas. Gaseous fuel is injected in the direction of the combustor axis and air is allowed to enter along the tangential and axial direction of the combustor to create swirling flow with recirculation as well as enhanced mixing of the hot gas near the fuel nozzle. The experimental results of temperature and emission of combustion process are presented. Three ratios of axial to tangential air entry were studied. These ratios were 7/3 (Case 1), 1 (Case 2), and 3/7(Case 3). Case2 shows the highest temperature followed by Case 1 and 3. The amount of NOx and CO emission measured at the outlet is observed to be the lowest for Case 3 as a result of the high recirculation and swirling effect.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Flameless Combustion; Swirling; NOx Emission; Swirl Number; Recirculation

Full Text:

PDF


References


W. Blasiak, K. Narayanan, and W. Yang, "Evaluation of new combustion technologies for CO2 and NOx reduction in steel industries," Advances in air pollution series, pp. 761-771, 2004.

A. E. Khalil and A. K. Gupta, "Swirling distributed combustion for clean energy conversion in gas turbine applications," Applied Energy, vol. 88, pp. 3685-3693, 2011.
http://dx.doi.org/10.1016/j.apenergy.2011.03.048

A. E. E. Khalil, V. K. Arghode, and A. K. Gupta, "Novel mixing for ultra-high thermal intensity distributed combustion," Applied Energy, vol. 105, pp. 327-334, 5// 2013.
http://dx.doi.org/10.1016/j.apenergy.2012.12.071

A. Cavaliere and M. de Joannon, "Mild combustion," Progress in Energy and Combustion Science, vol. 30, pp. 329-366, 2004.
http://dx.doi.org/10.1016/j.pecs.2004.02.003

M. Katsuki and T. Hasegawa, "The science and technology of combustion in highly preheated air," in Symposium (International) on combustion, 1998, pp. 3135-3146.
http://dx.doi.org/10.1016/s0082-0784(98)80176-8

A. Gupta, T. Hasegawa, and S. Bolz, "Effect of air preheat temperature and oxygen concentration on flame structure and emission," Journal of energy resources technology, vol. 121, pp. 209-216, 1999.
http://dx.doi.org/10.1115/1.2795984

X. Xing, B. Wang, and Q. Lin, "Structure of reaction zone of normal temperature air flameless combustion in a 2 ton/h coal-fired boiler furnace," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 221, pp. 473-480, 2007.
http://dx.doi.org/10.1243/09576509jpe308

J. Wünning and J. Wünning, "Flameless oxidation to reduce thermal NO-formation," Progress in energy and combustion science, vol. 23, pp. 81-94, 1997.
http://dx.doi.org/10.1016/s0360-1285(97)00006-3

A. E. Khalil and A. K. Gupta, "Swirling flowfield for colorless distributed combustion," Applied Energy, vol. 113, pp. 208-218, 2014.
http://dx.doi.org/10.1016/j.apenergy.2013.07.029

V. K. Arghode, A. E. E. Khalil, and A. K. Gupta, "Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor," Applied Energy, vol. 95, pp. 132-138, 7// 2012.
http://dx.doi.org/10.1016/j.apenergy.2012.02.020

A. A. A. Abuelnuor, M. A. Wahid, A. Saat, M. O. Abdalla, and S. E. Hosseini, "Flameless Combustion and the Effect of Air Preheat on the Combustion Performance: a Review," International Journal on Heat and Mass Transfer Theory and Applications, vol. 1, 2013.
http://dx.doi.org/10.4028/www.scientific.net/amm.388.206

M. Mancini, P. Schwöppe, R. Weber, and S. Orsino, "On mathematical modelling of flameless combustion," Combustion and Flame, vol. 150, pp. 54-59, 7// 2007.
http://dx.doi.org/10.1016/j.combustflame.2007.03.007

V. Battaglia, F. Crippa, E. Malfa, and M. Fantuzzi, "CFD for Flameless Burners Development," 2008.

C. Lezcano, A. Amell, and F. Cadavid, "Numerical calculation of the recirculation factor in flameless furnaces," Dyna, vol. 80, pp. 144-151, 2013.

A. K. Gupta, D. G. Lilley, and N. Syred, "Swirl flows," Tunbridge Wells, Kent, England, Abacus Press, 1984, 488 p., vol. 1, 1984.

A. H. Lefebvre, " Gas Turbine Combustion" 1999.
http://dx.doi.org/10.1016/b978-0-08-013275-4.50007-6

R. A. Yetter, I. Glassman, and H. C. Gabler, "Asymmetric whirl combustion: A new low NOx approach," Proceedings of the combustion institute, vol. 28, pp. 1265-1272, 2000.
http://dx.doi.org/10.1016/s0082-0784(00)80339-2

Y. A. Eldrainy, K. M. Saqr, H. S. Aly, and M. N. M. Jaafar, "CFD insight of the flow dynamics in a novel swirler for gas turbine combustors," International Communications in Heat and Mass Transfer, vol. 36, pp. 936-941, 2009.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.06.013

K. M. Saqr, "Aerodynamics and Thermochemistry of Turbulent Confined Asymmetric Vortex Flames," PhD, UniversitiTeknologi Malaysia, 2011.

Alwan, R.A., Wahid, M.A., Yasin, M.F.M., Al-Taie, A.K.A.-Y., Abuelnuor, A.A.A., Effects of equivalence ratio on asymmetric vortex combustion in a Low NOx Burner, (2015) International Review of Mechanical Engineering (IREME), 9 (5), pp. 476-483.
http://dx.doi.org/10.15866/ireme.v9i5.7157

M. Khaleghi, S. E. Hosseini, and M. Abdul Wahid, "Investigations of asymmetric non-premixed meso-scale vortex combustion," Applied Thermal Engineering, vol. 81, pp. 140-153, 4/25/ 2015.
http://dx.doi.org/10.1016/j.applthermaleng.2015.02.022

V. Yakhot and S. A. Orszag, "Renormalization group analysis of turbulence. I. Basic theory," Journal of scientific computing, vol. 1, pp. 3-51, 1986.
http://dx.doi.org/10.1007/bf01061452

K. M. Saqr, H. S. Aly, M. M. Sies, and M. A. Wahid, "Computational and experimental investigations of turbulent asymmetric vortex flames," International Communications in Heat and Mass Transfer, vol. 38, pp. 353-362, 2011.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.12.001

ANSYS, " ANSYS FLUENT User’s Guide,"2011.
http://dx.doi.org/10.2172/1048829

N. Peters, Turbulent Combustion. Cambridge, UK: Cambridge University Press, 2000.
http://dx.doi.org/10.1016/s0010-2180(01)00244-9

B. F. Magnussen and B. H. Hjertager, "On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion," Symposium (International) on Combustion, vol. 16, pp. 719-729, 1977.
http://dx.doi.org/10.1016/s0082-0784(77)80366-4

B. F. Magnussen, B. H. Hjertager, J. G. Olsen, and D. Bhaduri, "Effects of turbulent structure and local concentrations on soot formation and combustion in C2H2 diffusion flames," Symposium (International) on Combustion, vol. 17, pp. 1383-1393, 1979.
http://dx.doi.org/10.1016/s0082-0784(79)80130-7

S. Patankar, Numerical Heat Transfer and Fluid Flow: Taylor & Francis, 1980.

H. I. Kassem, K. M. Saqr, H. S. Aly, M. M. Sies, and M. A. Wahid, "Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM," International Communications in Heat and Mass Transfer, vol. 38, pp. 363-367, 3// 2011.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.12.012

İ. Yılmaz, M. Taştan, M. İlbaş, and C. Tarhan, "Effect of turbulence and radiation models on combustion characteristics in propane–hydrogen diffusion flames," Energy Conversion and Management, vol. 72, pp. 179-186, 8// 2013.
http://dx.doi.org/10.1016/j.enconman.2012.07.031

S. E. Hosseini and M. A. Wahid, "Enhancement of exergy efficiency in combustion systems using flameless mode," Energy Conversion and Management, vol. 86, pp. 1154-1163, 10// 2014.
http://dx.doi.org/10.1016/j.enconman.2014.06.065

S. E. Hosseini, G. Bagheri, and M. A. Wahid, "Numerical investigation of biogas flameless combustion," Energy Conversion and Management, vol. 81, pp. 41-50, 5// 2014.
http://dx.doi.org/10.1016/j.enconman.2014.02.006

M. Bidi, R. Hosseini, and M. R. H. Nobari, "Numerical analysis of methane–air combustion considering radiation effect," Energy Conversion and Management, vol. 49, pp. 3634-3647, 12// 2008.
http://dx.doi.org/10.1016/j.enconman.2008.07.010


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize