Open Access Open Access  Restricted Access Subscription or Fee Access

Stress-Strain Analysis and Simulation for Estimation of Cutting Forces on the Skin

Dario German Buitrago(1), Luis Carlos Ruíz(2), Olga Lucia Ramos(3*)

(1) Research Group GAV, Department of Mechatronics Engineering, Nueva Granada Military University, Colombia
(2) Research Group GAV, Department of Mechatronics Engineering, Nueva Granada Military University, Colombia
(3) Research Group GAV, Department of Mechatronics Engineering, Nueva Granada Military University, Colombia
(*) Corresponding author


DOI: https://doi.org/10.15866/ireme.v9i6.7691

Abstract


In order to control correctly robot-assisted surgeries and to avoid compromising the patient's vital organs, the forces exerted over the tissues of the human body must be calculated, monitored and adjusted. In a skin incision, the magnitude of the force depends on the incision’s depth and on the biomechanical properties of skin itself. In this paper, a finite element analysis of the incision and puncture when using a scalpel is presented; its purpose is to calculate the range of forces that can safely be applied with it during a surgery. First, a tension evaluation of puncturing with a scalpel until it completely cuts across the skin was carried out. Then, the stress of performing a 10 mm incision with a surgical scalpel was assessed. The results of these analyses demonstrate that the range of forces that could be applied depends on skin's biomechanical properties and on the condition of the skin sample. In order to perform the puncture, the force should be among the ranges of 0.840 to 8.598 N, while for cutting the skin, the force range is from 0.93 to 10.32 N. This work makes an important contribution for the field of “Computational Analysis of Materials” and “Modeling of Skin Characteristics”.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Stress-Strain Analysis; Finite Element Simulation; Biomechanical Properties of Skin; Cutting Forces

Full Text:

PDF


References


R. Muradore, D. Bresolin, L. Geretti, P. Fiorini, T. Villa, Robotic Surgery, IEEE Robotics & Automation Magazine, Vol. 18, n. 3, pp. 24-32, 2011.
http://dx.doi.org/10.1109/mra.2011.942112

S. Yuen, N. Vasilyev, P. del Nido, R. Howe, Robotic tissue tracking for beating heart mitral valve surgery,Medical Image Analysis, Vol. 17, n. 8, pp. 1236-1242, 2013.
http://dx.doi.org/10.1016/j.media.2010.06.007

A. Sirvaraman, R. Sanchez-Salas, D. Prapotnich, E. Barret, A. Mombet, N.Cathala, F. Rozet, M. Galiano, X. Cathelineau, Robotics in urological surgery: Evolution, current status and future perspectives,ActasUrológicasEspañolas (English Edition), Vol. 39, n. 7, pp. 435-441, 2015.
http://dx.doi.org/10.1016/j.acuroe.2015.06.002

H. Choi, H.-S. Kwak, Y.-A. Lim, H.-J. Kim, Surgical Robot for Single-Incision Laparoscopic Surgery,IEEE Transactions on Biomedical Engineering, Vol. 61, nº 9, pp. 2458-2466, 2014.
http://dx.doi.org/10.1109/tbme.2014.2320941

J.Burgner, D. Rucker, H. Gilbert, P. Swaney, A Telerobotic System for Transnasal Surgery,IEEE/ASME Transactions on Mechatronics, Vol. 19, n. 3, pp. 99-1006, 2013.
http://dx.doi.org/10.1109/tmech.2013.2265804

J. Konstantinova, A. Jiang, K. Althoefer, P. Dasgupta, T. Nanayakkara, Implementation of Tactile Sensing for Palpation in Robot-Assisted Minimally Invasive Surgery: A Review,IEEE Sensors Journal, Vol. 14, n. 8, pp. 2490-2501, 2014.
http://dx.doi.org/10.1109/jsen.2014.2325794

R. Valero, Y. Ko, S. Chauchan, O. Schatloff, A. Sivaraman, R. Coelho, F. Ortega, K. Pañmer, R. Sanchez-Salas, H. Davila, X. Cathelineau, V. Patel, Robotic surgery: History and teaching impact, ActasUrológicasEspañolas, Vol. 35, n. 9, pp. 540-545, 2011.
http://dx.doi.org/10.1016/j.acuroe.2011.12.004

E. Barkana, An Orthopedic Surgical Robotic System-OrthoRoby, Human – Computer Systems Interaction: Backgrounds and Applications 2, Vol. 99, pp. 75-90, 2012.
http://dx.doi.org/10.1007/978-3-642-23172-8_6

J. Pile, N. Simaan, Modeling, Design, and Evaluation of a Parallel Robot for Cochlear Implant Surgery,IEEE/ASME Transactions on Mechatronics, Vol. 19, n. 6, pp. 1746-1755, 2014.
http://dx.doi.org/10.1109/tmech.2014.2308479

M. Bowthorpe, M. Tavakoli, H. Becher, R. Howe, Smith Predictor-Based Robot Control for Ultrasound-Guided teleoperated Beating-Heart Surgery,IEEE Journal of biomedical and health informatics, Vol. 18, n. 1, pp. 157-166, 2014.
http://dx.doi.org/10.1109/jbhi.2013.2267494

R. Precup, L. Kovacs, T. Haidegger, S. Preitl, A. Kovacs, B. Benyo, E. Borbely, Z. Benyo, Time delay compensation by fuzzy control in the case of master-slave telesurgery, 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 2011, pp. 305-310.
http://dx.doi.org/10.1109/saci.2011.5873019

T. Hansen, C. Henningsen, J. Nielsen, R. Pedersen, J. Schwensen, S. Sivabalan, J. Larsen, J. Leth, Implementing force-feedback in a telesurgery environment, using parameter estimation, IEEE International Conference on Control Applications (CCA), Dubrovnik, Croatia, 2012, pp. 859-864.
http://dx.doi.org/10.1109/cca.2012.6402708

C. Pailler-Mattei, S. Bec, H.Zahouani, In vivo measurements of the elastic mechanical properties of human skin by indentation tests,Medical Engineering & Physics, Vol. 30, n. 5, pp. 599-606, 2008.
http://dx.doi.org/10.1016/j.medengphy.2007.06.011

J. Isaza, Comportamiento Mecánico de tejidos Blandos Tipo Multicapa, (Medellín: Universidad Nacional de Colombia, 2013).

X. Liang, S. Boppart, Biomechanical Properties of In Vivo Human Skin From Dynamic Optical Coherence Elastography,IEEE Transactions on Biomedical Engineering, Vol. 57, n. 4, pp. 953-959, 2010.
http://dx.doi.org/10.1109/tbme.2009.2033464

S. Chen, N. Li, J. Chen, Finite element analysis of microneedle insertion into skin, IET Micro & Nano Letters, Vol. 7, n. 12, pp. 1206-1209, 2012.
http://dx.doi.org/10.1049/mnl.2012.0585

T. Chanthasopeephan, J. Desai y A. C. W. Lau, Determining Fracture Characteristics in Scalpel Cutting of Soft Tissue, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2006), Pisa, Italy, 2006, pp. 899-904.
http://dx.doi.org/10.1109/biorob.2006.1639205

A. NíAnnaidh, K. Bruyere, M. Destrade, M. Gilchrist, M. Ottenio, Characterising the Anisotropic Mechanical Properties of Excised Human Skin, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 5, n. 1, pp. 139-148, 2012.
http://dx.doi.org/10.1016/j.jmbbm.2011.08.016

A. Gallagher, A. NíAnniadh, K. Bruyere, M. Ottonio, H. Xie, M. Gilchrist, Dynamic Tensile Properties of Human Skin, International Research Council on the Biomechanics of Injury (IRCOBI), Dublin, Ireland, 2012, pp. 494-502.

N. F. A. Manan, M. H. M. Ramli, M. N. A. A. Patar, C. Holt, S. Evans, M. Chizari, J. Mahmud, Determining Hyperelastic Parameters of Human Skinusing 2D finite element modelling and simulation, IEEE Symposium on Humanities, Science and Engineering Research (SHUSER), Kuala Lumpur, Malaysia, 2012, pp. 805-809.
http://dx.doi.org/10.1109/shuser.2012.6268996

C.Jacquemoud, K. Bruyere-Garnier, M. Coret, «Methodology to determine failure characteristics of planar soft tissues using a dynamic tensile test,Journal of Biomechanical, Vol. 40, n. 2, pp. 468-475, 2007.
http://dx.doi.org/10.1016/j.jbiomech.2005.12.010

F. H. Silver, J. W. Freeman, D. DeVore, Viscoelastic properties of human skin and processed dermis,Skin Research and Technology, Vol. 7, n. 1, pp. 18-23, 2001.
http://dx.doi.org/10.1034/j.1600-0846.2001.007001018.x

K.-S. Choi, H. Sun, P.-A. Heng, An efficient and scalable deformable model for virtual reality-based medical applications,Artificial Intelligence in Medicine, Vol. 32, n. 1, pp. 51-69, 2004.
http://dx.doi.org/10.1016/j.artmed.2004.01.013

A. Gil, Structural analysis of prestressed Saint Venant–Kirchhoff hyperelastic membranes subjected to moderate strains, Computers & Structures, Vol. 84, n. 15-16, pp. 1012-1028, 2006.
http://dx.doi.org/10.1016/j.compstruc.2006.02.009

Y.-S. Yu, Y.-P. Zhao, Deformation of PDMS membrane and microcantilever by a water droplet: Comparison between Mooney–Rivlin and linear elastic constitutive models, Journal of Colloid and Interface Science, Vol. 332, n. 2, pp. 467-476, 2009.
http://dx.doi.org/10.1016/j.jcis.2008.12.054

A. Ehret, On a molecular statistical basis for Ogden's model of rubber elasticity, Journal of the Mechanics and Physics of Solids, Vol. 78, pp. 249-268, 2015.
http://dx.doi.org/10.1016/j.jmps.2015.02.006

R. A. González, E. Álvarez, J. Moya, K. Abreu, Modelos de materiales hiperelásticos para el análisis de los elastómeros usando el MEF, Ingeniería Mecánica, Vol. 12, n. 3, pp. 57-66, 2009.

S. Jiang, P. Li, Y. Yu, J. Liu, Z. Yang, Experimental study of needle-tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics, Journal of Biomechanics, Vol. 47, n. 13, pp. 3344-3353, 2014.
http://dx.doi.org/10.1016/j.jbiomech.2014.08.007

Y. Fukushima, K. Saito, K. Naemura, Estimation of the cutting force using the dynamic friction coefficient obtained by reaction force during the needle insertion, First CIRP Conference on BioManufacturing 2013, Tokyo, Japan, 2013, pp. 265-269.
http://dx.doi.org/10.1016/j.procir.2013.01.052


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2021 Praise Worthy Prize