Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical Modeling of Hydraulic Transient in Plastic Pipes


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v10i1.7514

Abstract


The main objective claimed by this study is the numerical modeling of hydraulic transients in plastic pipe, typically made of polyethylene. It allows to investigate, the effect of the viscoelasticity of such material, on water hammer phenomena by taking into account the unsteady part of friction term. The approach to the problem is based on the theory of unsteady one dimensional flow in a cylindrical straight pipe. The set partial differential equations to be solved are obtained using conservation laws and behavior for the fluid and the pipe wall. These equations are associated, for the two media, with the constitutive relationship compatibility of interfaces on velocities and stresses. A global digital processing is achieved using the method of characteristics. The results obtained are in good agreement with those found in the literature.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Hydraulic Transient; Plastic Pipes; Polyethylene; Water-Hammer; Methods of Characteristics; Numerical Processing

Full Text:

PDF


References


Joukowsky, Y. (1900). Ûber der hydraulischen Stoss in Wasserleitungen [Over the hydraulic shock in water pipes]. Mémoires de l’Académie Impériale de St. Petersbourg, Bd. IX, N.5.

L. Allievi,.Teoria generale del moto perturbato dell’acqu ani tubi in pressione,Ann. Soc. Ing. Arch. Ithaliana, French translation by Allievi ,1904, Revue de mécanique,1903.

Bergeron, L .1950. Du Coup de bélier en hydraulique au coup de foudre en électricité. (Water-hammer in hydraulics and wave surges in electricity) Paris: Dunod (in French) [English translation by ASME committee, New York: John Wiley & Sons, 1961.

E.B. Wylie, V. L. Streeter, Fluid Transients. New York: Mac Graw-Hill, 1978.

G. Tison, Le mouvement non permanent succédant à l’ouverture d’une vanne sur une conduite en polyéthylène, Becetel, communication N°3, Université de Gand, 1958.

E. Rieutord and A. Blanchard, Ecoulement non permanent en conduite viscoélastique - coup de bélier, Journal of Hydraulic research, Vol. 17, N° 3, 1979.

M. Gally, M. Gûney, E. Rieutord, An Investigation of Pressure Transients in Viscoelastic Pipes. J.FluidsEng 101(4), 495-499, 1979.
http://dx.doi.org/10.1115/1.3449017

E. Rieutord and A. Blanchard, Ecoulement non permanent en conduite viscoélastique - coup de bélier, Journal of Hydraulic research, Vol. 17, N° 3, 1979.

M. Güney, Contribution à l’étude du phénomène de coup de bélier en conduite viscoélastique, Thèse présentée à l’Université de Lyon, 1977

A. K. Soares, D. Covas, L.F.R. Reis, Analysis of PVC pipewall viscoelasticity during water hammer, J. Hydraul. Eng., 134,1389–1395, 2008.
http://dx.doi.org/10.1061/(asce)0733-9429(2008)134:9(1389)

S. Meniconi, B. Brunone, M. Ferrante, C. Massari, Transient hydrodynamics of in-line valves in viscoelastic pressurized pipes: long-period analysis, Exp. Fluids, 53, 265–275, 2012a.
http://dx.doi.org/10.1007/s00348-012-1287-3

J. Mandel, Cours de mécanique des milieux continus, Gauthier-Villars, Paris, Vol. 2, Annexe XXI, 1966.

R.M. Christensen, Theory of viscoelasticity an introduction, Academic Press. 1971.
http://dx.doi.org/10.1002/pol.1971.110090915

A.Adamkowski, M., Lewandowski, Experimental examination of unsteady friction models for transient pipe flow simulation, J. Fluid. Eng., 128, 1351–1363, 2006.
http://dx.doi.org/10.1115/1.2354521

A. Bergant, A. Simpson, J. Vitkovsky, J., Developments in unsteady pipe flow friction modelling, J. Hydraul. Res., 39, 249–257, 2001.
http://dx.doi.org/10.1080/00221680209499910

B. Brunone, A. Berni, Wall shear stress in transient turbulent pipe flow by local velocity measurement, J. Hydraul. Eng., 136, 716–726, 2010.
http://dx.doi.org/10.1061/(asce)hy.1943-7900.0000234

M. S. Ghidaoui, M. Zhao, D. A. McInnis D. H. Axworthy, A review of water hammer theory and practice, Appl. Mech. Rev., 58, 49–76, 2005.
http://dx.doi.org/10.1115/1.1828050

W. Zielke, Frequency Dependent Friction in Transient Pipe Flow, ASME, Journal of Basic Engineering, Vol. 90, N°1, 1968.
http://dx.doi.org/10.1115/1.3605127

B. Brunone, B. W. Karney, M.., Velocity profiles, unsteady friction losses and transient modelling. Proc., 26th Annu, Water Resour. Plng. and Mgmt. Conf., ASCE, Reston, Va. (on CDROM), 1999.

A.E. Vardy, J.M.B. Brown, Transient Turbulent Friction in Smooth Pipe Flows, Journal of Sound and Vibration, Vol. 259, n. 5, pp. 1011-1036, 2003.
http://dx.doi.org/10.1006/jsvi.2002.5160

A.E. Vardy, J.M.B. Brown, Transient Turbulent Friction in fully rough Pipe Flows. Journal of Sound and Vibration,Vol. 270, n. (1-2), pp. 233-257,2004.
http://dx.doi.org/10.1016/s0022-460x(03)00492-9

J. Vítkovský, M.L. Stephens, A. Bergant, M. Lambert, A.R. Simpson, Efficient and accurate calculation of Zielke and Vardy-Brown unsteady friction in pipe transients, Proc. 9th International Conference on Pressure Surges (Ed. Murray, S.J.), BHR Group, Chester, UK, 2004, Vol. 2, pp. 405-419.

D.E. Goldberg and E.B. Wylie, Characteristics Method Using Time-Line Interpolation, ASCE Journal of Hydraulic Division, Vol. 109, N° 5, 1983.
http://dx.doi.org/10.1061/(asce)0733-9429(1983)109:5(670)

A.R. Courant and D. Hilbert, Method of Mathematical Physics, Vol. 1 and 2, Interscience Publishers, N.Y., 1962.
http://dx.doi.org/10.1126/science.137.3527.334

M. Taibi, R. Chammami, M. Kerroum, K. Gueraoui,A. El Hammoumi, G. Zeggwagh, Modélisations des écoulements pulsés à deux phases, en conduites déformables ou rigides | [Pulsating flow of two phases in deformable or rigide tubes], ITBM-RBM, 2002
http://dx.doi.org/10.1016/s1297-9562(02)80012-2

El Khaoudi, F., Gueraoui, K., Driouich, M., Sammouda, M., Numerical and theoretical modeling of natural convection of nanofluids in a vertical rectangular cavity, (2014) International Review on Modelling and Simulations (IREMOS), 7 (2), pp. 350-355.
http://dx.doi.org/10.15866/iremos.v7i2.585

Men-la-yakhaf, S., Gueraoui, K., Maaouni, A., Driouich, M., Numerical and mathematical modeling of reactive mass transfer and heat storage installations of argan waste, (2014) International Review of Mechanical Engineering (IREME), 8 (1), pp. 236-240.
http://dx.doi.org/10.15866/ireme.v8i1.1265


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize