Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical Modelling of the Flow and Combustion Processes in Coal-Fired Vortex Furnace


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v9i5.7394

Abstract


Comprehensive mathematical model describing the basic aerothermochemical processes during the pulverized coal combustion in furnaces has been presented. With the use of in-house CFD code, the numerical simulation of the furnace processes has been carried out for the specific geometry of the vortex furnace which is a promising design for effective coal combustion with reduced emissions. Detailed flowfield information obtained in predictions include the 3D structure of the turbulent two-phase flow in the vortex furnace, the fields of concentrations, temperatures, radiative heat fluxes and other combustion parameters.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Pulverized Coal Combustion; Vortex Furnace; Numerical Modelling

Full Text:

PDF


References


A. A. Popov, N. V. Golovanov, et.al, Results of development and investigation of the pilot boiler device with TPE-427 furnace, Sibirskiy Physico-Technicheskiy Journal (in Russian), Vol. 5, pp. 15-20, 1991.

I. S. Anufriev, D. V. Krasinsky, E. Yu. Shadrin, O. V. Sharypov, Imaging flow structure in a vortex furnace, Technical Physics Letters, Vol. 40, n. 10, pp. 899-902, 2014.
http://dx.doi.org/10.1134/s1063785014100022

I. S. Anufriev, O. V. Sharypov, E. Yu. Shadrin, Flow diagnostics in a vortex furnace by particle image velocimetry, Technical Physics Letters, Vol. 39, n. 5, pp. 466-468, 2013.
http://dx.doi.org/10.1134/s1063785013050155

V. V. Salomatov, D. V. Krasinsky, Yu. A. Anikin, I. S. Anufriev, O. V. Sharypov, Kh. Enkhjargal, Experimental and numerical investigation of aerodynamic characteristics of swirling flows in a model of the swirling-type furnace of a steam generator, Journal of Engineering Physics and Thermophysics, Vol. 85, n. 2, pp. 282-293, 2012.
http://dx.doi.org/10.1007/s10891-012-0651-8

I. S. Anufriev, E. P. Kopyev, D. V. Krasinsky, V. V. Salomatov, E. Y. Shadrin, O. V. Sharypov, Numerical modelling of coal combustion processes in the vortex furnace with dual-port loading, Energy and Power Engineering, Vol. 5, n. 4B, pp. 306-310, 2013.
http://dx.doi.org/10.4236/epe.2013.54b060

R. I. Nigmatulin, Dynamics of Multiphase Media (Hemisphere Publ., New York, 1991).

E. P. Volkov, L. I. Zaichik, V. A. Pershukov, Modelling the Solid Fuel Combustion (in Russian, Nauka, Moscow, 1994).
http://dx.doi.org/10.1007/bf00851762

B. F. Magnussen, H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Proc. 16-th Int. Symp. on Combustion, 1976, pp.747-759.
http://dx.doi.org/10.1016/s0082-0784(77)80366-4

B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence (Academic Press, London, England, 1972).
http://dx.doi.org/10.1002/cite.330450309

F. Pourahmadi, J. A. C. Humphrey, Modelling solid-fluid turbulent flows with application to predicting erosive wear, Phys.-Chem. Hydrodynamics, Vol. 4, n. 3, pp. 191-219, 1983.
http://dx.doi.org/10.1016/0270-0255(85)90029-6

A. G. Demenkov, B. B. Ilyushin, D. Ph. Sikovsky, V. F. Strizhov, L. I. Zaichik, Development of the diffusion-inertia model of particle deposition in turbulent flows, Journal of Engineering Thermophysics, Vol. 18, n. 1, pp. 39-48, 2009.
http://dx.doi.org/10.1134/s1810232809010056

T. F. Smith, Z. F. Shen, J. N. Friedman, Evaluation of Coefficients for the Weighted Sum of Gray Gases Model, Proc. XX-th National ASME-AIChE Heat Transfer Conf., Milwakee, USA, August 2-5, 1981.

M. Nallasamy, Turbulence models and their applications to the prediction of internal flows: a review, Computers&Fluids, Vol. 15, n. 2, pp. 151–194, 1987.
http://dx.doi.org/10.1016/s0045-7930(87)80003-8

J. P. Van Doormaal, G. D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numerical Heat Transfer, Vol. 7, n. 2, pp. 147–163, 1984.
http://dx.doi.org/10.1080/01495728408961817

V. P. Ilyin, Iterative incomplete factorization methods (World Scientific, Singapore, 1992).

J. W. Mitchell, J. M. Tarbell, A kinetic model of nitric oxide formation during pulverized coal combustion, AIChE Journal, Vol. 28, n. 2, pp. 302-311, 1982.
http://dx.doi.org/10.1002/aic.690280220

S. S. Minaev, E. A. Pirogov, O. V. Sharypov, A nonlinear model for hydrodynamic instability of an expanding flame, Combustion, Explosion, and Shock Waves, Vol. 32, n. 5, pp. 481-488, 1996.
http://dx.doi.org/10.1007/bf01998569

A. A. Borissov, O. V. Sharypov, Self-sustained solitary waves in nonequilibrium media, Journal of Fluid Mechanics, Vol. 257, pp. 451-461, 1993.
http://dx.doi.org/10.1017/s0022112093003155

O. V. Sharypov, I. S. Anufriev, Model of evolution of finite-amplitude perturbations in a two-phase reactive system, Heat Transfer Research, Vol. 43, n. 2, pp. 109-122, 2012.
http://dx.doi.org/10.1615/heattransres.v43.i2.20

O. V. Sharypov, Dissipative effects and detonation in dusty media, Combustion, Explosion, and Shock Waves, Vol. 50, n. 4, pp. 417-423, 2014.
http://dx.doi.org/10.1134/s0010508214040091


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize