Open Access Open Access  Restricted Access Subscription or Fee Access

Fatigue Crack Deflection-Induced Retardation Based on the Principle of the Minimum Potential Energy


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v9i3.6153

Abstract


Fatigue crack growth retardation due to tensile overload-induced crack deflection is analyzed. The minimum potential energy principle is implemented to estimate the crack geometry change during the transition from the mode I to mode I+II. An effective stress intensity factor amplitude is derived to approximate the subsequent reduction of the fatigue crack growth rate due to an overload. The proposed model is applied to certain loading cases of CrNi steel, yielding encouraging results.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Crack Deflection; Retardation Factor; Minimum Potential Energy; Mixed Mode; Fatigue

Full Text:

PDF


References


Al Gaoudi, O., Achemlal, I., El Minor, H., Pluvinage, G., Plastic Zone and Volumetric Approach-Mixed Mode Fracture I+II Emanating From Notches, (2015) International Review of Mechanical Engineering (IREME), 9 (2), pp. 160-166.
http://dx.doi.org/10.15866/ireme.v9i2.5279

Annuar, A.F., Abdul Manan, M.S., Haftirman, Khalil, A.N.M., Preliminary study of using kerf as an alternative to crack interactions in multiple edge cracks based on non-uniform stress distribution, (2014) International Review of Mechanical Engineering (IREME), 8 (4), pp. 766-771.

Bendahane, K., Abdelaziz, Y., Chabani, A., Concepts and computer implementation of the X-FEM method for crack growth modeling without re-meshing, (2014) International Review of Mechanical Engineering (IREME), 8 (5), pp. 826-834.
http://dx.doi.org/10.15866/ireme.v8i5.2233

Pavlou, D.G., Kourousis, K.I., A phenomenological approach for fatigue damage accumulation of CF/PEEK laminates under two-stage loading, (2013) International Review of Mechanical Engineering (IREME), 7 (7), pp. 1323-1328.

S.Suresh, Fatigue of materials, Cambridge university press, 2003, Cambridge UK.
http://dx.doi.org/10.1002/adma.19930050420

W. Elber, Fatigue crack closure under cyclic tension, J. Engng. Fract. Mech. 2, 1970, 37-45.
http://dx.doi.org/10.1016/0013-7944(70)90028-7

D.G. Pavlou, Prediction of fatigue crack growth under real stress histories, Engineering Structures, 22, 2000, 1707-1713.
http://dx.doi.org/10.1016/s0141-0296(99)00069-3

C.M.Ward-Close,A.F.Blom, R.O. Ritcie, Mechanisms associated with transient fatigue crack growth under variable amplitude loading: an experimental and numerical study, Engineering Fracture Mechanics, 23, 4, 1989, 613-638.
http://dx.doi.org/10.1016/0013-7944(89)90195-1

S. Suresh, Micromechanisms of fatigue crack growth retardation following overloads, Engineering fracture mechanics, 18, 3, 1983, 577-593.
http://dx.doi.org/10.1016/0013-7944(83)90051-6

D.G.Pavlou, N.V.Vlachakis, M. G. Pavlou, V. N.Vlachakis, Estimation of fatigue crack growth retardation due to crack branching, Computational Materials Science, Vol. 29, pp. 215-224, 2004.
http://dx.doi.org/10.1016/j.commatsci.2003.12.003

H.A. Richard, B. Schramm,N.-H.Schirmeisen, Cracks on Mixed Mode loading-Theories, experiments, simulations, International journal of fatigue, 62, 2014, 93-103.
http://dx.doi.org/10.1016/j.ijfatigue.2013.06.019

S.Boljanovic, S. Maksimovic, Mixed mode crack growth simulation with/without overloads, International journal of fatigue, 67, 2014, 183-190.
http://dx.doi.org/10.1016/j.ijfatigue.2013.11.011

V.N. Shlyannikov, A.V. Tumanov, An inclined surface crack subjected to biaxial loading, International journal of solids and structures, 48, 2011, 1778-1790.
http://dx.doi.org/10.1016/j.ijsolstr.2011.02.024

V.N. Shlyannikov, Fatigue crack paths for inclined cracks and surface flaws under biaxial loading, Engineering fracture mechanics, 77, 2010, 1772-1780.
http://dx.doi.org/10.1016/j.engfracmech.2010.02.028

J.R. Mohanty, B.B. Verma, P.K. Ray, Prediction of fatigue life with interspersed mode-I and mixed-mode (I+II) overloads by an exponential model: Extensions and improvements, Engineering fracture mechanics, 76, 2009, 454-468.
http://dx.doi.org/10.1016/j.engfracmech.2008.12.001

G.C.Sih, B.M.Barthelemy, Mixed mode fatigue crack growth predictions, Engineering fracture mechanics, 13(3), 1980, 439-451.
http://dx.doi.org/10.1016/0013-7944(80)90076-4

PS.Theoharis, NP. Andrianopoulos, The T-criterion applied to ductile fracture, International Journal of Fracture, Vol. 20, p.125-30, 1982.
http://dx.doi.org/10.1007/bf01130617

T. Kundu, Fundamentals of Fracture Mechanics, CRC press, 2008, p. 102-108.

D.G.Pavlou,G.N. Labeas, N.V. Vlachakis, F.G. Pavlou, Fatigue crack propagation trajectories under mixed-mode cyclic loading, Engineering Structures, Vol. 25, 2003, 869-875.
http://dx.doi.org/10.1016/s0141-0296(03)00018-x

S. Suresh, C.F. Shih, Plastic near-tip fields for branched cracks, International Journal of Fracture, 30, 1986, 237-259.
http://dx.doi.org/10.1007/bf00019705

H. Tada, P.C. Paris,G.R. Irwin, The stress analysis of cracks handbook, Professional Engineering Publishing, 2000.
http://dx.doi.org/10.1115/1.801535

Ch.Bichler, R. Pippan, Effect of single overloads in ductile metals: A reconsideration, Engineering Fracture Mechanics,74, 2007, 1344-1359.
http://dx.doi.org/10.1016/j.engfracmech.2006.06.011


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize