Open Access Open Access  Restricted Access Subscription or Fee Access

A Bipotential Method Coupling Contact, Friction and Adhesion

Nazihe Terfaya(1*), A. Berga(2), M. Raous(3)

(1) Laboratoire de Fiabilité des Matériaux et des Structures, Université TAHRI Mohamed Béchar, Algeria
(2) Laboratoire de Fiabilité des Matériaux et des Structures, Université TAHRI Mohamed Béchar, Algeria
(3) Laboratoire de Mécanique et d'Acoustique (UP 7051) 31, chemin Joseph Aiguier 13402 Marseille Cedex 20, France
(*) Corresponding author



The paper is related to the analysis and the modeling of structural interface behaviors when unilateral contact, friction and adhesion interact. Among the contact models in literature, the model developed by Raous, Cangémi, Cocou and Monerie (RCCM model) is retained. It consists to include strict unilateral contact to avoid interpenetration, initial adhesion progressively decreases when the load increases, and Coulomb’s friction which is progressively activated when adhesion decreases. Because of its implicit character, the Coulomb friction law with adhesion is non-associated, and the notion of superpotential with normality rule cannot be used anymore. In the present work, to overcome this non-associated character, a specific potential adapted to coupling unilateral contact, friction and adhesion  is build and named bipotential. A numerical model is proposed and improved to solve the boundaries values problem. The algorithm is implemented in the finite element code SYMEF which has been developed at the University of Bechar (Algeria). A comparative study is made between the bipotential model and the previously developed RCCM model. The numerical results show that, this approach is robust and efficient in terms of numerical stability, precision convergence and CPU time compared to the RCCM model.
Copyright © 2015 Praise Worthy Prize - All rights reserved.


Contact; Friction; Adhesion; Bipotential Method; Convex Analysis

Full Text:



SH. Chan, IS. Tuba, A finite element method for contact problems of solid bodies. Int. J. Mech. Sci., 13: 615–639, 1971.

T. Tsuta , S. Yamaji, Finite element analysis of contact problem, Theory and practice in finite element structural analysis. Proc. 1973 Tokyo seminar on element analysism, pp. 177–194, 1973.

B. Fredriksson, Finite element solution of surface nonlinearities in structural mechanics with special emphasis to contact and fracture mechanics problems. Comput. Struct. 6: 281–290, 1976.

N. Kikuchi, JT. Oden,Contact problems in elastostatics (Oden JT, Carey GF (eds) Finite Elements, Vol. 5, Prentice- Hall, Englewood Cliffs, NJ, 1984).

A. Francavilla, OC. Zienkiewicz, A note on numerical computation of elastic contact problems. Int. J. Numer. Meth. Eng. 9: 913–924, 1975.

TD. Sachdeva CV. Ramarkrishnan, A finite element solution for the two-dimensional elastic contact problems with friction. Int. J. Numer. Meth. Eng. 17: 1257–1271, 1981.

DH. Nguyen , G. De Saxcé, Frictionless contact of elastic bodies by finite element method and mathematical programming technique. Comput. Struct. 11: 55–67, 1980.

A. Klarbring, G. Björkman, A mathematical programming approach to contact problems with friction and varying contact surface. Comput. Struct. 30: 1185–1198, 1988.

WX. Zhong, SM. Sun, A parametric quadratic programming approach to elastic contact problems with friction. Comput. Struct. 32: 37–43, 1989.

KJ. Bathe, A. Chaudhary, A solution method for planar and axisymmetric contact problems. Int. J. Numer. Meth. Eng. 21: 65–88, 1985.

B. Nour-omid, P. Wriggers, (1986) A two-level iteration method for solution of contact problems. Comput. Meth. Appl. Mech. Eng. 54: 131–144, 1986.

M. Jean, G. Touzot, Implementation of unilateral contact and dry friction in computer codes dealing with large deformation problems. J. Theor. Appl. Mech. 7: 145–160, 1988.

P. Alart, A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Meth. Appl. Mech. Eng. 92: 353–375, 1991.

JC. Simo, TA. Laursen,(1992) An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42: 97–116,1992.

A. Klarbring, Mathematical programming and augmented Lagrangian methods for frictional contact problems. (In Curnier A (ed.), Proc. Contact Mechanics Int. Symp.PPUR, pp. 369–390, 1992).

JH. Heegaard, A. Curnier,(1993) An augmented Lagrangian method for discrete large slip problems. Int. J. Numer. Meth. Eng. 36: 569–593, 1993.

G. De Saxcé, Z.Q. Feng, New inequality and functional for contact with friction: The implicit standard material approach. Mech. Struct. Mach. 19: 301–325, 1991.

G. De Saxcé, Z.Q. Feng, The bipotential method : a constructive approach to design the complete contact law with friction and improved numerical algorithms, Math. Comput. Modelling, 28, No 4-8, pp.225-245, 1998.

P. Joli, Z.Q. Feng, Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework, Int. J. Numer. Meth. Engng 73, 317-330,2008.

M. Raous, L. Cangémi, M. Cocou, A consistent model coupling adhesion, friction and unilateral contact, Comput. Methods Appl. Mech. Engrg. 177, pp.383–399, 1999.

M. Raous, Y. Monerie, Unilateral contact, friction and adhesion: 3D cracks in composite materials ( in: J.A.C. Martins, M.D.P. Monteiro Marques (Eds.), Contact Mechanics, Kluwer, Dordrecht 2002 , pp. 333–346).

M. Frémond, Adhérence des solides, J. Méc. Théor. Appl. 6 (3),pp.383–407, 1987.

M. Frémond, Contact with adhesion, in: J.-J. Moreau, P.D. Panagiotopoulos (Eds.), Nonsmooth Mechanics and Applications ( in: CISM Courses and Lectures, vol. 302, Springer, Wien, 1988, pp. 177–221).

L. Cangémi, Frottement et adhérence : Frottement et adhérence: modèle, traitement numérique et application à l'interface fibre/matrice. Thèse de doctorat, Institut de Mécanique de Marseille, 1997.

M. Raous, L. Cangémi and M. Cocu, Un modèle couplant adhérence et frottement pour le contact entre deux solides déformables. Cptes. Rend. Acad. Sc. Paris, 325 Série IIb, pp.503-509, 1997.

N. Terfaya., Contribution à la modélisation des problèmes de contact et de frottement bi –dimensionnels, Mémoire de magister, Centre Universitaire de Bechar, Algérie, 2000.

A. Berga, N. Terfaya, Modélisation de la plasticité des sols et du phénomène de contact avec frottement par l’approche de matériaux standards implicites, Colloque International GECOTEC, 11-12 Octobre 2003, Alger, Algérie.

A. Berga et N. Terfaya, Architecture des logiciels de simulation, Annales de l’université de Béchar Algérie , N° 1, 2005

Y. Monerie, Fissuration des matériaux composites : rôle de l’interface fibre/matrice, Thèse doctorat, Université. Provence, Marseille, 2000.

M. Raous, M.A. Karray, Model coupling friction and adhesion for steel-concrete interfaces, Int. J. Comput. Appl. Technol. 34 (Issue 1), 42–51, 2009.

F. Fouchal, F. Lebon, I. Titeux, Contribution to the modelling of interfaces in masonry construction, Constr. Build. Mater. 23 (Issue 6)2428–2441, 2009.

N. Terfaya, M. Raous, A. Berga, Cohesive zone model and bipotential formulation: application to a pile/soil interface, in: Proceedings of the 3rd Euro Mediterranean Symposium on Advances in Geomaterials and Structures, pp. 45-50, 2010.

A.Berga,G. De Saxcé , Elastoplastic finite element analysis of soil problems with implicit standard material constitutive laws, Revue européenne des éléments finis 3 ,411–456,1994.

A. Berga, Mathematical and numerical modeling of the non-associated plasticity of soils—Part 1:The boundary value problem, International Journal of Non-Linear Mechanics 47 .26–35,(2012).

A. Berga, Mathematical and numerical modeling of the non-associated plasticity of soils—Part 2:Finite element analysis, International Journal of Non-Linear Mechanics 4, 36–45,2012.

M. Jean, V. Acary, Y. Monerie, Non-smooth contact dynamics approach of cohesive materials, Philosophical Transactions: Mathematical, Physical Engineering Sciences, Royal Society, London A 359 (1789)2497–2518,2001.

V. Acary, Contribution la modélisation mécanique et numérique des édifices maçonnés . Thèse, Jean, M., supervisor, Université de la Méditerranée, Marseille,2001.

Y. Monerie, V. Acary, Formulation dynamique d’un modèle de zone cohésive tridimensionnel couplant endommagement et frottement, Rev. Eur. Elem Finis, 10, PP 489-504, 2001.

V. Acary, Y. Monerie, Nonsmooth fracture dynamics using a cohesive zone model, INRIA report n6032, 56 pp. (ISSN 0249-6399),2006.

G. Duvaut, J.L. Lions, Les inéquations en mécanique et en physique, (Dunod, Paris, 1972).

N. Kikuchi and J.T. Oden J.T.,Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods,(SIAM, Studies in Applied Mathematics, Philadelphia, 1988).

Z. Q. Feng, 2D or 3D frictional contact algorithms and applications in a large deformation context. Communications in Numerical Methods in Engineering 11:409–416, 1995.

Z. Q. Feng Z-Q, F. Peyraut F,N. Labed , Solution of large deformation contact problems with friction between Blatz–Ko hyperelastic bodies. International Journal of Engineering Science 41:2213–2225, 2003.

M. Raous, Quasi-static Signorini problem with Coulomb friction and coupling to adhesion, (In Wriggers P., and Panagiotopoulos, P.D. editors, New developpements in contact problems, CISM courses and lecture , N° 383 Springer 101-178., 1999).

M. Raous, V. Belloeil, I. Rosu, Modélisation de l’adhésion par collage, Rapport interne, LMA et LCPC, 2004.

M. Schryve, Modèle d’adhésion cicatrisante et applications au contact verre/élastomère, Thesis, M. Raous, M. Cocou (Adv.), Univ. Provence, 2008.

G. ANTONI, Localisation de rupture au voisinage d’interface : couplage d’endommagement volumique et surfacique , rapport interne, LMA, Marseille, 2007.

J.C. Latil, M. Raous, Module Gyptis version 1.0. Contact unilatéral avec frottement en mécanique des structures. (Inéquations variationnelles, Publication du L.M.A., Notes Scientifiques, 132, CNRS., 1991)


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2021 Praise Worthy Prize