Open Access Open Access  Restricted Access Subscription or Fee Access

New Enhanced Cooling Towers Models by Implementation of Drift Losses Calculations


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v9i3.5774

Abstract


Currently, the most commonly used model to simulate cooling tower operation is Merkel’s model, though its implementation involves various hypotheses proving sometimes to be not suitable for real applications. Research demonstrates that it is possible to substitute this model by a more simplified one introduced by Arns and Klenke. Although this substitution has given satisfactory results for both models, it is found that the water loss (also called the drift losses) is neglected. This work tends to improve Merkel and Simplified models by implementing the calculation of water losses by drift as well as contributing to enrich the simplified model so as to substitute Merkel’s model. This paper describes the new formulations of the standard and simplified models introducing the drift losses calculation. This latter represents water mass flow rate escaping from the cooling system in the form of droplets and mechanically driven in the outlet air flow. The authors have conducted a comparative study of the results obtained with these improved models. This study shows very good agreement between the two models which allows the substitution of Merkel’s model by Simplified model and they offer a better simulation for the operation of counter flow cooling towers.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Cooling Tower; Modelization; Simulation; Evaporation; Drift Losses; Heat Exchanger

Full Text:

PDF


References


P.Arneodo, V.Giarto, A.Mazza, System simulation, International Energy Agency, 1990,Annex 10.

Abdi, G., Benabdallah, T., New Extended Simulation Method at Out-Design Operating Conditions for Cooling Towers, (2015) International Review of Mechanical Engineering (IREME), 9 (1), pp. 75-80.
http://dx.doi.org/10.15866/ireme.v9i1.4672

Ch. Arns, Zur Beurteilung von Prospekt-und Angebotsangaben ϋberkϋhltϋrme, Kältetechnik- Klimatisierung, 10/1970, pp.335-339.

W. Klenke, Zur Einheitlichen Beurteilung und Berechnung von Gegenstrom und Kreuzstrom Kϋhltϋmen, Kältetechnik- Klimatisierung, 10/1970, pp.322-330.

Kern, D.Q, Process Heat Transfer (Mc Graw Hill, New York, 1950, pp.563-623).

Ashare, Refrigerating and Air Conditioning Engineers, Handbook Fundamentals, (American Society of Heating, Atlanta,1981, pp. 3.1-3.16)

J.W. Sutherland, Analysis of Mechanical Draught Counterflow Air/Water cooling towers, Journal of heat transfer, Vol. 105, pp. 576-583, 1983.
http://dx.doi.org/10.1115/1.3245624

R.L. Webb, A. Villacres, Algorithms for Performance Simulation of Cooling Towers, Evaporative Condensers and Fluid Coolers, (Ashare Transactions, Vol. 90, Part 2, 1984)
http://dx.doi.org/10.1080/01457638508939622

R.L. Webb, A Unified theoretical treatment for Thermal Analysis of Cooling Towers, Evaporative Condensers, and Fluid Coolers, (Ashrae Transactions, Vol. 90 , Part2, 1984)

H.C. Peitsman, U.J. Nicolas, System simulation ’Liquid chilling system’(TNO Institude of Applied Physics, April 19,1988)

Medardo Serna-Gonzalez, José M. Ponce-Ortega, Arturo Jiménez-Gutiérrez, MINLP optimization of mechanical draft counter flow wet-cooling tower, Chemical Enginnering Research And Design ,pp614-625, 88(2010).
http://dx.doi.org/10.1016/j.cherd.2009.09.016

Jean Lebrun, Thermodynamique Appliquée (Liège, Janvier 1989)

JC. Kloppers, DG. Kroger, A critical investigation into the heat and Mass Transfer analysis of counterflow wet-cooling towers, International journal of heat and mass transfer, Vol. 48, n. 1, pp.765-777, 2005c.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.09.004

JC. Kloppers, DG. Kroger, Cooling tower performance evaluation:Merkel, Poppe and e-NTU methods of analysis, Journal of engineering for Gas Trubines and Power ,Vol. 127, n. 1, pp.1-7, 2005b.
http://dx.doi.org/10.1115/1.1787504

M. Lucas, P.J. Martinez, J. Ruiz, A.S. Kaiser, A. Viedma, On the influence of psychometric ambient conditions on cooling tower drift deposition, International Journal of Heat and Mass Transfer Vol.53, pp.594-604, 2010
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.037

Medardo Serna-Gonzalez, José M. Ponce-Ortega, Arturo Jiménez-Gutiérrez, MINLP of mechanical draft counter flow wet-cooling towers, Chemical Engineering Resarch and Design, Vol. 88, pp.614-625, 2010.
http://dx.doi.org/10.1016/j.cherd.2009.09.016

Ashrae, Systems and Equipment Cooling Towers, Handbook CD-HVAC , (Chapter 36, 2005)

Ashrae, Systems and Equipment Cooling Towers, Handbook CD-HVAC, (Chapter 38, 2008)

J.R. Picardo, J.E. Variyar, The Merkel equation revisited: a novel method to compute the packed height of a cooling tower , Energy Conversion and Management , Vol. 57, pp.167-172, 2012.
http://dx.doi.org/10.1016/j.enconman.2011.12.016

J.R. Singham, Heat Exchanger Design Handbook (Hemisphere Publishing Corporation, New York , USA,1983).

A. Mohier, Thermodynamique(Édit. DELAGRAVE, Paris, 1965).

Abdi Ghezail, Simulation du fonctionnement d’une tour de refroidissement par la méthode standard et simplifiée, mémoire de magister(Master thesis), Dept. Mecanique, Ecole Nationale Polytechnique d’Oran (ENP D’Oran), Algeria, Juin 2011.

Mohamed Ait Hamadouche, Contribution à la simulation d’une tour de refroidissement par la méthode Simplifiée de Merkel, mémoire de magister(Master thesis), Dept. Mécanique, Université des sciences et de la technologie d’Oran, Algérie, 2012

F.Berne, J.Cordonnier, traitement des eaux, 1991.

Lemouari.M, Boumaza.M, Experimental investigation of the performance characteristics of a counter flow wet cooling tower, International Journal of Thermal Sciences, Vol.49, pp.2049-2056, 2010.
http://dx.doi.org/10.1016/j.ijthermalsci.2010.05.012


Refbacks




Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize